BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 266703)

  • 1. Energy-structure correlation in metalloporphyrins and the control of oxygen binding by hemoglobin.
    Warshel A
    Proc Natl Acad Sci U S A; 1977 May; 74(5):1789-93. PubMed ID: 266703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman spectra of cobalt-substituted hemoglobin: cooperativity and displacement of the cobalt atom upon oxygenation.
    Woodruff WH; Spiro TG; Yonetani T
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1065-9. PubMed ID: 4524615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of iron displacement out of the porphyrin plane on the resonance Raman spectra of heme proteins and iron porphyrins.
    Stavrov SS
    Biophys J; 1993 Nov; 65(5):1942-50. PubMed ID: 8298023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural model for the kinetic behavior of hemoglobin.
    Moffat K; Deatherage JF; Seybert DW
    Science; 1979 Nov; 206(4422):1035-42. PubMed ID: 493990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding specificity of the Porphyromonas gingivalis heme and hemoglobin receptor HmuR, gingipain K, and gingipain R1 for heme, porphyrins, and metalloporphyrins.
    Olczak T; Dixon DW; Genco CA
    J Bacteriol; 2001 Oct; 183(19):5599-608. PubMed ID: 11544222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular description of dioxygen bonding in hemoglobin.
    Olafson BD; Goddard WA
    Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1315-9. PubMed ID: 266173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weak-field anions displace the histidine ligand in a synthetic heme peptide but not in N-acetylmicroperoxidase-8: possible role of heme geometry differences.
    Cowley AB; Benson DR
    Inorg Chem; 2007 Jan; 46(1):48-59. PubMed ID: 17198412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The apparent quantum yield of T-state human hemoglobin. Contribution of protein and heme to rates of oxygen reactions.
    Morris RJ; Gibson QH
    J Biol Chem; 1984 Jan; 259(1):365-71. PubMed ID: 6706941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding free energies of inhibitors to iron porphyrin complex as a model for Cytochrome P450.
    Lee JY; Kang NS; Kang YK
    Biopolymers; 2012 Apr; 97(4):219-28. PubMed ID: 22113809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of tertiary structural change in hemoglobin.
    Gelin BR; Karplus M
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):801-5. PubMed ID: 265575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tension in haemoglobin revealed by Fe-His(F8) bond rupture in the fully liganded T-state.
    Paoli M; Dodson G; Liddington RC; Wilkinson AJ
    J Mol Biol; 1997 Aug; 271(2):161-7. PubMed ID: 9268649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemistry and biology of heme. Effect of metal salts, organometals, and metalloporphyrins on heme synthesis and catabolism, with special reference to clinical implications and interactions with cytochrome P-450.
    Beri R; Chandra R
    Drug Metab Rev; 1993; 25(1-2):49-152. PubMed ID: 8449148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of Ascaris hemoglobin domain I at 2.2 A resolution: molecular features of oxygen avidity.
    Yang J; Kloek AP; Goldberg DE; Mathews FS
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4224-8. PubMed ID: 7753786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidentate ligation of heme analogues; novel biomimetics of peroxidase active site.
    Ashkenasy G; Margulies D; Felder CE; Shanzer A; Powers LS
    Chemistry; 2002 Sep; 8(17):4017-26. PubMed ID: 12360943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron.
    Perutz MF
    Annu Rev Biochem; 1979; 48():327-86. PubMed ID: 382987
    [No Abstract]   [Full Text] [Related]  

  • 17. Nuclear magnetic resonance study of heme-heme interaction in hemoglobin M Milwaukee: implications concerning the mechanism of cooperative ligand binding in normal hemoglobin.
    Fung LW; Minton AP; Ho C
    Proc Natl Acad Sci U S A; 1976 May; 73(5):1581-5. PubMed ID: 1064027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of heme axial ligands in hemoglobin by organic solvents analyzed by CD, FTIR, and XANES techniques.
    Zentz C; el Antri S; Pin S; Cortes R; Massat A; Simon M; Alpert B
    Biochemistry; 1991 Mar; 30(11):2804-10. PubMed ID: 2007118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of Lysine as a Heme Axial Ligand: NMR Analysis of the Chlamydomonas reinhardtii Hemoglobin THB1.
    Preimesberger MR; Majumdar A; Lecomte JT
    Biochemistry; 2017 Jan; 56(4):551-569. PubMed ID: 28032976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of histidine in ligand binding ability of hemoglobin gene].
    Romanova TA; Krasnov PO; Kuzubov AA; Avramov PV
    Bioorg Khim; 2004; 30(2):141-5. PubMed ID: 15143668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.