These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 26670345)

  • 1. Reply to Broxterman, Richardson, and Amann.
    Johnson MA; Sharpe GR; Williams NC; Hannah R
    J Appl Physiol (1985); 2015 Dec; 119(12):1521. PubMed ID: 26670345
    [No Abstract]   [Full Text] [Related]  

  • 2. Less peripheral fatigue after prior exercise is not evidence against the regulation of the critical peripheral fatigue threshold.
    Broxterman RM; Richardson RS; Amann M
    J Appl Physiol (1985); 2015 Dec; 119(12):1520. PubMed ID: 26670344
    [No Abstract]   [Full Text] [Related]  

  • 3. Predominance of central motor command in the regulation of exercise.
    Perrey S
    J Appl Physiol (1985); 2010 Feb; 108(2):458. PubMed ID: 20118350
    [No Abstract]   [Full Text] [Related]  

  • 4. Counterpoint: Afferent feedback from fatigued locomotor muscles is not an important determinant of endurance exercise performance.
    Marcora S
    J Appl Physiol (1985); 2010 Feb; 108(2):454-6; discussion 456-7. PubMed ID: 20118347
    [No Abstract]   [Full Text] [Related]  

  • 5. Point: Afferent feedback from fatigued locomotor muscles is an important determinant of endurance exercise performance.
    Amann M; Secher NH
    J Appl Physiol (1985); 2010 Feb; 108(2):452-4; discussion 457; author reply 470. PubMed ID: 19729588
    [No Abstract]   [Full Text] [Related]  

  • 6. Arterial oxygenation, central motor output and exercise performance in humans.
    Noakes TD; Marino FE
    J Physiol; 2007 Dec; 585(Pt 3):919-21; author reply 923-4. PubMed ID: 17962324
    [No Abstract]   [Full Text] [Related]  

  • 7. Afferent feedback from fatigued locomotor muscles is important, but not limiting, for endurance exercise performance.
    Smirmaul BP; Fontes EB; Noakes TD
    J Appl Physiol (1985); 2010 Feb; 108(2):458. PubMed ID: 20135834
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of expiratory muscle fatigue on exercise tolerance and locomotor muscle fatigue in healthy humans.
    Taylor BJ; Romer LM
    J Appl Physiol (1985); 2008 May; 104(5):1442-51. PubMed ID: 18323465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor muscle fatigue is not critically regulated after prior upper body exercise.
    Johnson MA; Sharpe GR; Williams NC; Hannah R
    J Appl Physiol (1985); 2015 Oct; 119(7):840-50. PubMed ID: 26272315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle power and fatigue at the tolerable limit of ramp-incremental exercise in COPD.
    Cannon DT; Coelho AC; Cao R; Cheng A; Porszasz J; Casaburi R; Rossiter HB
    J Appl Physiol (1985); 2016 Dec; 121(6):1365-1373. PubMed ID: 27660300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limitation of fatigue and performance during exercise: the brain-muscle interaction.
    Blain GM; Hureau TJ
    Exp Physiol; 2017 Jan; 102(1):3-4. PubMed ID: 28044405
    [No Abstract]   [Full Text] [Related]  

  • 12. Basic reporting and interpretation of surface EMG amplitude and mean power frequency: a reply to Vitgotsky, Ogborn, and Phillips.
    Jenkins ND; Housh TJ; Bergstrom HC; Cochrane KC; Hill EC; Smith CM; Johnson GO; Schmidt RJ; Cramer JT
    Eur J Appl Physiol; 2016 Mar; 116(3):659-61. PubMed ID: 26705244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human muscle fatigue, eccentric damage and coherence in the EMG.
    Héroux ME; Gandevia SC
    Acta Physiol (Oxf); 2013 Aug; 208(4):294-5. PubMed ID: 23746370
    [No Abstract]   [Full Text] [Related]  

  • 14. Age differences in human skeletal muscle fatigue during high-intensity intermittent exercise.
    Ratel S; Lazaar N; Williams CA; Bedu M; Duché P
    Acta Paediatr; 2003 Nov; 92(11):1248-54. PubMed ID: 14696843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise and fatigue--is neuroendocrinology an important factor?
    Adler GK
    J Clin Endocrinol Metab; 2000 Jun; 85(6):2167-9. PubMed ID: 10852447
    [No Abstract]   [Full Text] [Related]  

  • 16. A new approach to studying muscle fatigue and factors affecting performance during dynamic exercise in humans.
    Lewis SF; Fulco CS
    Exerc Sport Sci Rev; 1998; 26():91-116. PubMed ID: 9696986
    [No Abstract]   [Full Text] [Related]  

  • 17. Viewpoint: Fatigue mechanisms determining exercise performance: integrative physiology is systems physiology.
    Ameredes BT
    J Appl Physiol (1985); 2008 May; 104(5):1545. PubMed ID: 18504823
    [No Abstract]   [Full Text] [Related]  

  • 18. Commentaries on viewpoint: maximal Na⁺-K⁺-ATPase activity is upregulated in association with muscle activity.
    Broch-Lips M; de Paoli F; Pedersen TH; Nielsen OB; Nielsen OB; Pedersen TH; de Paoli F; Broch-Lips M; Benziane B; Chibalin AV; Pirkmajer S; McKenna MJ; Goodman CA
    J Appl Physiol (1985); 2012 Jun; 112(12):2124-6. PubMed ID: 22707672
    [No Abstract]   [Full Text] [Related]  

  • 19. Viewpoint: Fatigue mechanisms determining exercise performance: integrative physiology is systems physiology.
    Duhamel TA
    J Appl Physiol (1985); 2008 May; 104(5):1544. PubMed ID: 18504818
    [No Abstract]   [Full Text] [Related]  

  • 20. Fatigue during high-intensity intermittent exercise: application to bodybuilding.
    Lambert CP; Flynn MG
    Sports Med; 2002; 32(8):511-22. PubMed ID: 12076177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.