These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26670388)

  • 1. Design and analysis of trials with a partially nested design and a binary outcome measure.
    Roberts C; Batistatou E; Roberts SA
    Stat Med; 2016 May; 35(10):1616-36. PubMed ID: 26670388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Appropriate statistical methods for analysing partially nested randomised controlled trials with continuous outcomes: a simulation study.
    Candlish J; Teare MD; Dimairo M; Flight L; Mandefield L; Walters SJ
    BMC Med Res Methodol; 2018 Oct; 18(1):105. PubMed ID: 30314463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of complex, partially nested clustering in a three-arm individually randomized group treatment trial: A case study with the wHOPE trial.
    Tong G; Seal KH; Becker WC; Li F; Dziura JD; Peduzzi PN; Esserman DA
    Clin Trials; 2022 Feb; 19(1):3-13. PubMed ID: 34693748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Choosing appropriate analysis methods for cluster randomised cross-over trials with a binary outcome.
    Morgan KE; Forbes AB; Keogh RH; Jairath V; Kahan BC
    Stat Med; 2017 Jan; 36(2):318-333. PubMed ID: 27680896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A readily available improvement over method of moments for intra-cluster correlation estimation in the context of cluster randomized trials and fitting a GEE-type marginal model for binary outcomes.
    Westgate PM
    Clin Trials; 2019 Feb; 16(1):41-51. PubMed ID: 30295512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and analysis of non-pharmacological treatment trials with multiple therapists per patient.
    Roberts C; Walwyn R
    Stat Med; 2013 Jan; 32(1):81-98. PubMed ID: 22865729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives.
    Brookes ST; Whitley E; Peters TJ; Mulheran PA; Egger M; Davey Smith G
    Health Technol Assess; 2001; 5(33):1-56. PubMed ID: 11701102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cluster randomised crossover trials with binary data and unbalanced cluster sizes: application to studies of near-universal interventions in intensive care.
    Forbes AB; Akram M; Pilcher D; Cooper J; Bellomo R
    Clin Trials; 2015 Feb; 12(1):34-44. PubMed ID: 25475880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An imbalance in cluster sizes does not lead to notable loss of power in cross-sectional, stepped-wedge cluster randomised trials with a continuous outcome.
    Kristunas CA; Smith KL; Gray LJ
    Trials; 2017 Mar; 18(1):109. PubMed ID: 28270224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the statistical power of different methods for the analysis of cluster randomization trials with binary outcomes.
    Austin PC
    Stat Med; 2007 Aug; 26(19):3550-65. PubMed ID: 17238238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the statistical power of different methods for the analysis of repeated cross-sectional cluster randomization trials with binary outcomes.
    Austin PC
    Int J Biostat; 2010 Mar; 6(1):Article 11. PubMed ID: 20949127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recommendations for the analysis of individually randomised controlled trials with clustering in one arm - a case of continuous outcomes.
    Flight L; Allison A; Dimairo M; Lee E; Mandefield L; Walters SJ
    BMC Med Res Methodol; 2016 Nov; 16(1):165. PubMed ID: 27899073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of a mixed effects logistic regression model for binary outcomes with unequal cluster size.
    Heo M; Leon AC
    J Biopharm Stat; 2005; 15(3):513-26. PubMed ID: 15920895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cost-efficient designs for three-arm trials with treatment delivered by health professionals: Sample sizes for a combination of nested and crossed designs.
    Moerbeek M
    Clin Trials; 2018 Apr; 15(2):169-177. PubMed ID: 29316807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample size calculations for randomised trials including both independent and paired data.
    Yelland LN; Sullivan TR; Price DJ; Lee KJ
    Stat Med; 2017 Apr; 36(8):1227-1239. PubMed ID: 28074483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and analysis of clinical trials with clustering effects due to treatment.
    Roberts C; Roberts SA
    Clin Trials; 2005; 2(2):152-62. PubMed ID: 16279137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the R coefficient of interest in cluster randomized trials with a binary outcome?
    Yepnang AMM; Caille A; Eldridge SM; Giraudeau B
    Stat Methods Med Res; 2020 Sep; 29(9):2470-2480. PubMed ID: 31971088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the risk difference, risk ratio and odds ratio scales for quantifying the unadjusted intervention effect in cluster randomized trials.
    Ukoumunne OC; Forbes AB; Carlin JB; Gulliford MC
    Stat Med; 2008 Nov; 27(25):5143-55. PubMed ID: 18613226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A note on effective sample size for constructing confidence intervals for the difference of two proportions.
    Liu GF
    Pharm Stat; 2012; 11(2):163-9. PubMed ID: 22337507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjusted intraclass correlation coefficients for binary data: methods and estimates from a cluster-randomized trial in primary care.
    Yelland LN; Salter AB; Ryan P; Laurence CO
    Clin Trials; 2011 Feb; 8(1):48-58. PubMed ID: 21335589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.