These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26670582)

  • 21. Anchoring of a nematic liquid crystal on a wettability gradient.
    Price AD; Schwartz DK
    Langmuir; 2006 Nov; 22(23):9753-9. PubMed ID: 17073507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape.
    Orlandi S; Benini E; Miglioli I; Evans DR; Reshetnyak V; Zannoni C
    Phys Chem Chem Phys; 2016 Jan; 18(4):2428-41. PubMed ID: 26700502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural properties and ring defect formation in discotic liquid crystal nanodroplets.
    Salgado-Blanco D; Llanas-García AH; Díaz-Herrera E; Martínez-González JA; Mendoza CI
    J Phys Condens Matter; 2022 Apr; 34(25):. PubMed ID: 35358952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topological defects around a spherical nanoparticle in nematic liquid crystal: coarse-grained molecular dynamics simulations.
    Ilnytskyi JM; Trokhymchuk A; Schoen M
    J Chem Phys; 2014 Sep; 141(11):114903. PubMed ID: 25240368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of the magnetic field on isotropic wetting behavior of a nematic liquid crystal.
    Kadivar E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031706. PubMed ID: 18851054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photonic control of surface anchoring on solid colloids dispersed in liquid crystals.
    Prathap Chandran S; Mondiot F; Mondain-Monval O; Loudet JC
    Langmuir; 2011 Dec; 27(24):15185-98. PubMed ID: 22047168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation.
    Zhang J; Borg MK; Sefiane K; Reese JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052403. PubMed ID: 26651708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics study of the dewetting of copper on graphite and graphene: implications for nanoscale self-assembly.
    Fuentes-Cabrera M; Rhodes BH; Fowlkes JD; López-Benzanilla A; Terrones H; Simpson ML; Rack PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041603. PubMed ID: 21599171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface ordering of diskotic liquid crystals.
    Bellier-Castella L; Caprion D; Ryckaert JP
    J Chem Phys; 2004 Sep; 121(10):4874-83. PubMed ID: 15332923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phase diagram of the uniaxial and biaxial soft-core Gay-Berne model.
    Berardi R; Lintuvuori JS; Wilson MR; Zannoni C
    J Chem Phys; 2011 Oct; 135(13):134119. PubMed ID: 21992294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orientational transitions in a nematic liquid crystal confined by competing surfaces.
    Rodríguez-Ponce I; Romero-Enrique JM; Rull LF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051704. PubMed ID: 11735942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slip-stick wetting and large contact angle hysteresis on wrinkled surfaces.
    Bukowsky C; Torres JM; Vogt BD
    J Colloid Interface Sci; 2011 Feb; 354(2):825-31. PubMed ID: 21145561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermotropic biaxial liquid crystalline phases in a mixture of attractive uniaxial rod and disk particles.
    Cuetos A; Galindo A; Jackson G
    Phys Rev Lett; 2008 Dec; 101(23):237802. PubMed ID: 19113595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces.
    An H; Liu G; Craig VS
    Adv Colloid Interface Sci; 2015 Aug; 222():9-17. PubMed ID: 25128452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropy in the wetting of rough surfaces.
    Chen Y; He B; Lee J; Patankar NA
    J Colloid Interface Sci; 2005 Jan; 281(2):458-64. PubMed ID: 15571703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How a Surface Nanodroplet Sits on the Rim of a Microcap.
    Peng S; Dević I; Tan H; Lohse D; Zhang X
    Langmuir; 2016 Jun; 32(23):5744-54. PubMed ID: 27183892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Liquid nanodroplets spreading on chemically patterned surfaces.
    Grest GS; Heine DR; Webb EB
    Langmuir; 2006 May; 22(10):4745-9. PubMed ID: 16649791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting the anchoring of liquid crystals at a solid surface: 5-cyanobiphenyl on cristobalite and glassy silica surfaces of increasing roughness.
    Roscioni OM; Muccioli L; Della Valle RG; Pizzirusso A; Ricci M; Zannoni C
    Langmuir; 2013 Jul; 29(28):8950-8. PubMed ID: 23597166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wetting and contact-line effects for spherical and cylindrical droplets on graphene layers: a comparative molecular-dynamics investigation.
    Scocchi G; Sergi D; D'Angelo C; Ortona A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061602. PubMed ID: 22304097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.