These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26670700)

  • 21. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system.
    Rolls ET; Tromans JM; Stringer SM
    Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field.
    Hamker FH; Zirnsak M
    Neural Netw; 2006 Nov; 19(9):1371-82. PubMed ID: 17014990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple cell model with dominating opponent inhibition for robust image processing.
    Hansen T; Neumann H
    Neural Netw; 2004; 17(5-6):647-62. PubMed ID: 15288890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boundary assignment in a recurrent network architecture.
    Jehee JF; Lamme VA; Roelfsema PR
    Vision Res; 2007 Apr; 47(9):1153-65. PubMed ID: 17368500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Four types of novelty-familiarity responses in associative recognition memory of humans.
    Düzel E; Habib R; Guderian S; Heinze HJ
    Eur J Neurosci; 2004 Mar; 19(5):1408-16. PubMed ID: 15016098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.
    Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F
    Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics and robustness of familiarity memory.
    Cortes JM; Greve A; Barrett AB; van Rossum MC
    Neural Comput; 2010 Feb; 22(2):448-66. PubMed ID: 19842985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fractal image perception provides novel insights into hierarchical cognition.
    Martins MJ; Fischmeister FP; Puig-Waldmüller E; Oh J; Geissler A; Robinson S; Fitch WT; Beisteiner R
    Neuroimage; 2014 Aug; 96():300-8. PubMed ID: 24699014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function.
    Spratling MW
    Neural Comput; 2012 Jan; 24(1):60-103. PubMed ID: 22023197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perception and memory: action and interaction.
    Eacott MJ; Heywood CA
    Crit Rev Neurobiol; 1995; 9(4):311-20. PubMed ID: 8829848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A model for learning topographically organized parts-based representations of objects in visual cortex: topographic nonnegative matrix factorization.
    Hosoda K; Watanabe M; Wersing H; Körner E; Tsujino H; Tamura H; Fujita I
    Neural Comput; 2009 Sep; 21(9):2605-33. PubMed ID: 19548799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How are complex cell properties adapted to the statistics of natural stimuli?
    Körding KP; Kayser C; Einhäuser W; König P
    J Neurophysiol; 2004 Jan; 91(1):206-12. PubMed ID: 12904330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability.
    Tanaka T; Aoyagi T; Kaneko T
    Neural Comput; 2012 Oct; 24(10):2700-25. PubMed ID: 22845820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons.
    Angelucci A; Bressloff PC
    Prog Brain Res; 2006; 154():93-120. PubMed ID: 17010705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning optimized features for hierarchical models of invariant object recognition.
    Wersing H; Körner E
    Neural Comput; 2003 Jul; 15(7):1559-88. PubMed ID: 12816566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Online formation of a hierarchical cognitive map for object-place association by theta phase coding.
    Sato N; Yamaguchi Y
    Hippocampus; 2005; 15(7):963-78. PubMed ID: 16145691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor.
    Hilgetag CC; O'Neill MA; Young MP
    Philos Trans R Soc Lond B Biol Sci; 2000 Jan; 355(1393):71-89. PubMed ID: 10703045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning deep hierarchical visual feature coding.
    Goh H; Thome N; Cord M; Lim JH
    IEEE Trans Neural Netw Learn Syst; 2014 Dec; 25(12):2212-25. PubMed ID: 25420244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emergence of simple-cell receptive field properties by learning a sparse code for natural images.
    Olshausen BA; Field DJ
    Nature; 1996 Jun; 381(6583):607-9. PubMed ID: 8637596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Components of recognition memory: dissociable cognitive processes or just differences in representational complexity?
    Cowell RA; Bussey TJ; Saksida LM
    Hippocampus; 2010 Nov; 20(11):1245-62. PubMed ID: 20882548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.