BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 26670848)

  • 21. Effects of Ultrasound Frequency on Nanodroplet-Mediated Histotripsy.
    Vlaisavljevich E; Aydin O; Yuksel Durmaz Y; Lin KW; Fowlkes B; ElSayed M; Xu Z
    Ultrasound Med Biol; 2015 Aug; 41(8):2135-47. PubMed ID: 25959056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior.
    Vlaisavljevich E; Lin KW; Warnez MT; Singh R; Mancia L; Putnam AJ; Johnsen E; Cain C; Xu Z
    Phys Med Biol; 2015 Mar; 60(6):2271-92. PubMed ID: 25715732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cavitation-induced pressure saturation: a mechanism governing bubble nucleation density in histotripsy.
    Maxwell AD; Vlaisavljevich E
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38518377
    [No Abstract]   [Full Text] [Related]  

  • 24. Control of cavitation activity by different shockwave pulsing regimes.
    Huber P; Debus J; Jöchle K; Simiantonakis I; Jenne J; Rastert R; Spoo J; Lorenz WJ; Wannenmacher M
    Phys Med Biol; 1999 Jun; 44(6):1427-37. PubMed ID: 10498515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bubble-Induced Color Doppler Feedback for Histotripsy Tissue Fractionation.
    Miller RM; Zhang X; Maxwell AD; Cain CA; Xu Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):408-19. PubMed ID: 26863659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MR-based detection of individual histotripsy bubble clouds formed in tissues and phantoms.
    Allen SP; Hernandez-Garcia L; Cain CA; Hall TL
    Magn Reson Med; 2016 Nov; 76(5):1486-1493. PubMed ID: 26599823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualizing the Histotripsy Process: Bubble Cloud-Cancer Cell Interactions in a Tissue-Mimicking Environment.
    Vlaisavljevich E; Maxwell A; Mancia L; Johnsen E; Cain C; Xu Z
    Ultrasound Med Biol; 2016 Oct; 42(10):2466-77. PubMed ID: 27401956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time feedback of histotripsy thrombolysis using bubble-induced color Doppler.
    Zhang X; Miller RM; Lin KW; Levin AM; Owens GE; Gurm HS; Cain CA; Xu Z
    Ultrasound Med Biol; 2015 May; 41(5):1386-401. PubMed ID: 25623821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of the dynamics of a boiling vapour bubble using pressure-modulated high intensity focused ultrasound without the shock scattering effect: A first proof-of-concept study.
    Pahk KJ
    Ultrason Sonochem; 2021 Sep; 77():105699. PubMed ID: 34371476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting the growth of nanoscale nuclei by histotripsy pulses.
    Bader KB; Holland CK
    Phys Med Biol; 2016 Apr; 61(7):2947-66. PubMed ID: 26988374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting Tissue Susceptibility to Mechanical Cavitation Damage in Therapeutic Ultrasound.
    Mancia L; Vlaisavljevich E; Xu Z; Johnsen E
    Ultrasound Med Biol; 2017 Jul; 43(7):1421-1440. PubMed ID: 28408061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of a shock wave induced cavitation activity both in vitro and in vivo.
    Tu J; Matula TJ; Bailey MR; Crum LA
    Phys Med Biol; 2007 Oct; 52(19):5933-44. PubMed ID: 17881810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.
    Wang JC; Zhou Y
    Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):301-9. PubMed ID: 23357904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soft Tissue Aberration Correction for Histotripsy Using Acoustic Emissions From Cavitation Cloud Nucleation and Collapse.
    Yeats E; Lu N; Sukovich JR; Xu Z; Hall TL
    Ultrasound Med Biol; 2023 May; 49(5):1182-1193. PubMed ID: 36759271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - histotripsy.
    Xu Z; Raghavan M; Hall TL; Mycek MA; Fowlkes JB
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1122-32. PubMed ID: 18519220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy.
    Sapozhnikov OA; Khokhlova VA; Bailey MR; Williams JC; McAteer JA; Cleveland RO; Crum LA
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1183-95. PubMed ID: 12243163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study.
    Duryea AP; Roberts WW; Cain CA; Tamaddoni HA; Hall TL
    J Endourol; 2014 Jan; 28(1):90-5. PubMed ID: 23957846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual-beam histotripsy: a low-frequency pump enabling a high-frequency probe for precise lesion formation.
    Lin KW; Duryea AP; Kim Y; Hall TL; Xu Z; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):325-40. PubMed ID: 24474138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.