BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

641 related articles for article (PubMed ID: 26670851)

  • 21. In vivo mapping of brain elasticity in small animals using shear wave imaging.
    Macé E; Cohen I; Montaldo G; Miles R; Fink M; Tanter M
    IEEE Trans Med Imaging; 2011 Mar; 30(3):550-8. PubMed ID: 20876009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SWAVE Imaging of Placental Elasticity and Viscosity: Proof of Concept.
    Abeysekera JM; Ma M; Pesteie M; Terry J; Pugash D; Hutcheon JA; Mayer C; Lampe L; Salcudean S; Rohling R
    Ultrasound Med Biol; 2017 Jun; 43(6):1112-1124. PubMed ID: 28392000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties.
    Zhang X; Yin Y; Guo Y; Fan N; Lin H; Liu F; Diao X; Dong C; Chen X; Wang T; Chen S
    Ultrasound Med Biol; 2015 May; 41(5):1461-72. PubMed ID: 25638310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the effects of reflected waves in transient shear wave elastography.
    Deffieux T; Gennisson JL; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2032-5. PubMed ID: 21989866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.
    Jiang Y; Li G; Qian LX; Liang S; Destrade M; Cao Y
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1119-28. PubMed ID: 25697960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography.
    Latorre-Ossa H; Gennisson JL; De Brosses E; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):833-9. PubMed ID: 22547295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvement of Shear Wave Motion Detection Using Harmonic Imaging in Healthy Human Liver.
    Amador C; Song P; Meixner DD; Chen S; Urban MW
    Ultrasound Med Biol; 2016 May; 42(5):1031-41. PubMed ID: 26803391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry.
    Urban MW; Chen S; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):748-58. PubMed ID: 19406703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Gaussian shear wave in a dispersive medium.
    Parker KJ; Baddour N
    Ultrasound Med Biol; 2014 Apr; 40(4):675-84. PubMed ID: 24412170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maximum likelihood estimation of shear wave speed in transient elastography.
    Audière S; Angelini ED; Sandrin L; Charbit M
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1338-49. PubMed ID: 24835213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Resolution Elastography for Thin-Layer Mechanical Characterization: Toward Skin Investigation.
    Chartier C; Mofid Y; Bastard C; Miette V; Maruani A; Machet L; Ossant F
    Ultrasound Med Biol; 2017 Mar; 43(3):670-681. PubMed ID: 28043724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tomoelastography by multifrequency wave number recovery from time-harmonic propagating shear waves.
    Tzschätzsch H; Guo J; Dittmann F; Hirsch S; Barnhill E; Jöhrens K; Braun J; Sack I
    Med Image Anal; 2016 May; 30():1-10. PubMed ID: 26845371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging.
    Tanter M; Touboul D; Gennisson JL; Bercoff J; Fink M
    IEEE Trans Med Imaging; 2009 Dec; 28(12):1881-93. PubMed ID: 19423431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study.
    Kishimoto R; Suga M; Koyama A; Omatsu T; Tachibana Y; Ebner DK; Obata T
    BMJ Open; 2017 Jan; 7(1):e013925. PubMed ID: 28057657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging.
    Gennisson JL; Deffieux T; Macé E; Montaldo G; Fink M; Tanter M
    Ultrasound Med Biol; 2010 May; 36(5):789-801. PubMed ID: 20420970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 4-D ultrafast shear-wave imaging.
    Gennisson JL; Provost J; Deffieux T; Papadacci C; Imbault M; Pernot M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1059-65. PubMed ID: 26067040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Narrowband shear wave generation by a Finite-Amplitude radiation force: The fundamental component.
    Giannoula A; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):343-58. PubMed ID: 18334341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors that influence kidney shear wave speed assessed by acoustic radiation force impulse elastography in patients without kidney pathology.
    Bota S; Bob F; Sporea I; Şirli R; Popescu A
    Ultrasound Med Biol; 2015 Jan; 41(1):1-6. PubMed ID: 25438855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microvasculature alters the dispersion properties of shear waves--a multi-frequency MR elastography study.
    Jugé L; Petiet A; Lambert SA; Nicole P; Chatelin S; Vilgrain V; Van Beers BE; Bilston LE; Sinkus R
    NMR Biomed; 2015 Dec; 28(12):1763-71. PubMed ID: 26768491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shear elasticity estimation from surface wave: the time reversal approach.
    Brum J; Catheline S; Benech N; Negreira C
    J Acoust Soc Am; 2008 Dec; 124(6):3377-80. PubMed ID: 19206764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.