These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26670852)

  • 1. Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.
    Lenge M; Ramalli A; Tortoli P; Cachard C; Liebgott H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2126-37. PubMed ID: 26670852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of transverse oscillation method.
    Udesen J; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):959-71. PubMed ID: 16764450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vector-velocity estimation in swept-scan using a K-space approach.
    Jeng GS; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):947-58. PubMed ID: 16764449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.
    Park DW; Kruger GH; Rubin JM; Hamilton J; Gottschalk P; Dodde RE; Shih AJ; Weitzel WF
    J Ultrasound Med; 2013 Oct; 32(10):1815-30. PubMed ID: 24065263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound imaging velocimetry: effect of beam sweeping on velocity estimation.
    Zhou B; Fraser KH; Poelma C; Mari JM; Eckersley RJ; Weinberg PD; Tang MX
    Ultrasound Med Biol; 2013 Sep; 39(9):1672-81. PubMed ID: 23791353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-frame-rate 2-D vector blood flow imaging in the frequency domain.
    Lenge M; Ramalli A; Boni E; Liebgott H; Cachard C; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1504-14. PubMed ID: 25167150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time vector velocity assessment through multigate Doppler and plane waves.
    Ricci S; Bassi L; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):314-24. PubMed ID: 24474137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects influencing focusing in synthetic aperture vector flow imaging.
    Oddershede N; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1811-25. PubMed ID: 17941387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High frame-rate blood vector velocity imaging using plane waves: simulations and preliminary experiments.
    Udesen J; Gran F; Hansen KL; Jensen JA; Thomsen C; Nielsen MB
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1729-43. PubMed ID: 18986917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative real-time blood flow estimation with intravascular ultrasound in the presence of in-plane flow.
    de Ana FJ; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1952-61. PubMed ID: 16422407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vivo synthetic aperture flow imaging in medical ultrasound.
    Nikolov SI; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jul; 50(7):848-56. PubMed ID: 12894918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of velocity vectors in synthetic aperture ultrasound imaging.
    Jensen JA; Oddershede N
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1637-44. PubMed ID: 17167998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Plane Wave 2-D Vector Flow Imaging Using Transverse Oscillation and Directional Beamforming.
    Jensen J; Villagomez Hoyos CA; Stuart MB; Ewertsen C; Nielsen MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1050-1062. PubMed ID: 28422656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clutter filtering influence on blood velocity estimation using speckle tracking.
    Fadnes S; Bjærum S; Torp H; Lovstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2079-91. PubMed ID: 26670849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coded ultrasound for blood flow estimation using subband processing.
    Gran F; Udesen J; Nielsen MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2211-20. PubMed ID: 18986869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doppler ultrasound signals simulation from vessels with various stenosis degrees.
    Fang X; Wang Y; Wang W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e173-7. PubMed ID: 16844156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-D tracking Doppler: a new method to limit spectral broadening in pulsed wave Doppler.
    Fredriksen TD; Ekroll IK; Lovstakken L; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1896-905. PubMed ID: 24658720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution functional vascular assessment with ultrasound.
    Yeh CK; Ferrara KW; Kruse DE
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1263-75. PubMed ID: 15493694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate blood peak velocity estimation using spectral models and vector doppler.
    Ricci S; Vilkomerson D; Matera R; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):686-96. PubMed ID: 25881346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.