These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 26670939)

  • 1. Nanoscale Kerr Nonlinearity Enhancement Using Spontaneously Generated Coherence in Plasmonic Nanocavity.
    Chen H; Ren J; Gu Y; Zhao D; Zhang J; Gong Q
    Sci Rep; 2015 Dec; 5():18315. PubMed ID: 26670939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-enhanced Kerr nonlinearity via subwavelength-confined anisotropic Purcell factors.
    Ren J; Chen H; Gu Y; Zhao D; Zhou H; Zhang J; Gong Q
    Nanotechnology; 2016 Oct; 27(42):425205. PubMed ID: 27632352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-plasmon-induced modification on the spontaneous emission spectrum via subwavelength-confined anisotropic Purcell factor.
    Gu Y; Wang L; Ren P; Zhang J; Zhang T; Martin OJ; Gong Q
    Nano Lett; 2012 May; 12(5):2488-93. PubMed ID: 22512860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity.
    Wang L; Gu Y; Chen H; Zhang JY; Cui Y; Gerardot BD; Gong Q
    Sci Rep; 2013 Oct; 3():2879. PubMed ID: 24096943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas.
    Abb M; Wang Y; de Groot CH; Muskens OL
    Nat Commun; 2014 Sep; 5():4869. PubMed ID: 25189713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system.
    Wang H; Goorskey D; Xiao M
    Phys Rev Lett; 2001 Aug; 87(7):073601. PubMed ID: 11497891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization-Dependent Purcell Enhancement on a Two-Dimensional h-BN/WS
    Du B; Li Y; Jiang M; Zhang H; Wu L; Wen W; Liu Z; Fang Z; Yu T
    Nano Lett; 2022 Feb; 22(4):1649-1655. PubMed ID: 35107290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring optical nonlinearities via the Purcell effect.
    Bermel P; Rodriguez A; Joannopoulos JD; Soljacić M
    Phys Rev Lett; 2007 Aug; 99(5):053601. PubMed ID: 17930750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetically induced grating based on the giant Kerr nonlinearity controlled by spontaneously generated coherence.
    Ba N; Wang L; Wu XY; Liu XJ; Wang HH; Cui CL; Li AJ
    Appl Opt; 2013 Jun; 52(18):4264-72. PubMed ID: 23842169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Kerr Nonlinearity and Nonlinear Figure of Merit in Silicon Nanowires Integrated with 2D Graphene Oxide Films.
    Zhang Y; Wu J; Yang Y; Qu Y; Jia L; Moein T; Jia B; Moss DJ
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33094-33103. PubMed ID: 32597629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colossal Kerr nonlinearity based on electromagnetically induced transparency in a five-level double-ladder atomic system.
    Hamedi HR; Gharamaleki AH; Sahrai M
    Appl Opt; 2016 Aug; 55(22):5892-9. PubMed ID: 27505368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Kerr nonlinearity by multiphoton coherence.
    Matsko AB; Novikova I; Welch GR; Zubairy MS
    Opt Lett; 2003 Jan; 28(2):96-8. PubMed ID: 12656496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcavity-enhanced Kerr nonlinearity in a vertical-external-cavity surface-emitting laser.
    Kriso C; Kress S; Munshi T; Grossmann M; Bek R; Jetter M; Michler P; Stolz W; Koch M; Rahimi-Iman A
    Opt Express; 2019 Apr; 27(9):11914-11929. PubMed ID: 31052740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kerr Nonlinearity in 2D Graphdiyne for Passive Photonic Diodes.
    Wu L; Dong Y; Zhao J; Ma D; Huang W; Zhang Y; Wang Y; Jiang X; Xiang Y; Li J; Feng Y; Xu J; Zhang H
    Adv Mater; 2019 Apr; 31(14):e1807981. PubMed ID: 30730064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realizing optical bistability and tristability in plasmonic coated nanoparticles with radial-anisotropy and Kerr-nonlinearity.
    Jiang XC; Zhou YW; Gao DL; Huang Y; Gao L
    Opt Express; 2020 Jun; 28(12):17384-17394. PubMed ID: 32679947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic nonlinear Kerr media: Z-scan characterization and interaction with hybridly polarized beams.
    Wen B; Hu Y; Rui G; Lv C; He J; Gu B; Cui Y
    Opt Express; 2019 May; 27(10):13845-13857. PubMed ID: 31163843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Hierarchical Nanostructure for Enhanced Optical Nonlinearity Based on Scattering Mechanism.
    Pang C; Li R; Li Z; Dong N; Ren F; Wang J; Chen F
    Small; 2020 Oct; 16(39):e2003172. PubMed ID: 32877018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media.
    Zhong ZJ; Xu Y; Lan S; Dai QF; Wu LJ
    Opt Express; 2010 Jan; 18(1):79-86. PubMed ID: 20173825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of optical Kerr nonlinearity of a photonic bandgap structure by Z-scan measurement.
    Hwang J; Wu JW
    Opt Lett; 2005 Apr; 30(8):875-7. PubMed ID: 15865384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant Self-Kerr Nonlinearity in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems Under Low-Intensity Light Irradiance.
    Tohari MM; Lyras A; AlSalhi MS
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30002312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.