BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26670940)

  • 21. Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis.
    Li XF; Dai LY
    Spine (Phila Pa 1976); 2009 May; 34(11):1140-7. PubMed ID: 19444060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-speed video analysis improves the accuracy of spinal cord compression measurement in a mouse contusion model.
    Fournely M; Petit Y; Wagnac É; Laurin J; Callot V; Arnoux PJ
    J Neurosci Methods; 2018 Jan; 293():1-5. PubMed ID: 28923686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pain behaviors after spinal cord contusion injury in two commonly used mouse strains.
    Kerr BJ; David S
    Exp Neurol; 2007 Aug; 206(2):240-7. PubMed ID: 17586495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation between parameters of spinal cord impact and resultant injury.
    Noyes DH
    Exp Neurol; 1987 Mar; 95(3):535-47. PubMed ID: 3817078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of contusion load on cervical spinal cord: A finite element study.
    Zhu R; Chen YH; Yu QQ; Liu SQ; Wang JJ; Zeng ZL; Cheng LM
    Math Biosci Eng; 2020 Jan; 17(3):2272-2283. PubMed ID: 32233534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical Behaviors in Three Types of Spinal Cord Injury Mechanisms.
    Khuyagbaatar B; Kim K; Man Park W; Hyuk Kim Y
    J Biomech Eng; 2016 Aug; 138(8):. PubMed ID: 27276391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse.
    Ma M; Basso DM; Walters P; Stokes BT; Jakeman LB
    Exp Neurol; 2001 Jun; 169(2):239-54. PubMed ID: 11358439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of contact velocity and cord compression in determining the severity of spinal cord injury.
    Kearney PA; Ridella SA; Viano DC; Anderson TE
    J Neurotrauma; 1988; 5(3):187-208. PubMed ID: 3246693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical indicators of injury severity are decreased with increased thecal sac dimension in a bench-top model of contusion type spinal cord injury.
    Jones CF; Kwon BK; Cripton PA
    J Biomech; 2012 Apr; 45(6):1003-10. PubMed ID: 22349113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a large-animal model to measure dynamic cerebrospinal fluid pressure during spinal cord injury: Laboratory investigation.
    Jones CF; Lee JH; Kwon BK; Cripton PA
    J Neurosurg Spine; 2012 Jun; 16(6):624-35. PubMed ID: 22519927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Animals models of spinal cord contusion injury.
    Verma R; Virdi JK; Singh N; Jaggi AS
    Korean J Pain; 2019 Jan; 32(1):12-21. PubMed ID: 30671199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of early surgical decompression on functional and histological outcomes after severe experimental thoracic spinal cord injury.
    Jalan D; Saini N; Zaidi M; Pallottie A; Elkabes S; Heary RF
    J Neurosurg Spine; 2017 Jan; 26(1):62-75. PubMed ID: 27636866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Cervical Hemi-Contusion Spinal Cord Injury Model for the Investigation of Novel Therapeutics Targeting Proximal and Distal Forelimb Functional Recovery.
    Mondello SE; Sunshine MD; Fischedick AE; Moritz CT; Horner PJ
    J Neurotrauma; 2015 Dec; 32(24):1994-2007. PubMed ID: 25929319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A controlled pneumatic technique for experimental spinal cord contusion.
    Anderson TE
    J Neurosci Methods; 1982 Nov; 6(4):327-33. PubMed ID: 7154714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multimodal sensor-based weight drop spinal cord impact system for large animals.
    Kim H; Kim JW; Hyun JK; Park I
    Spine J; 2017 Dec; 17(12):1947-1955. PubMed ID: 28844010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histopathological and behavioral characterization of a novel cervical spinal cord displacement contusion injury in the rat.
    Pearse DD; Lo TP; Cho KS; Lynch MP; Garg MS; Marcillo AE; Sanchez AR; Cruz Y; Dietrich WD
    J Neurotrauma; 2005 Jun; 22(6):680-702. PubMed ID: 15941377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unilateral cervical spinal cord injury induces bone loss and metabolic changes in non-human primates (
    Wu X; Xu X; Liu Q; Ding J; Liu J; Huang Z; Huang Z; Wu X; Li R; Yang Z; Jiang H; Liu J; Zhu Q
    J Orthop Translat; 2021 Jul; 29():113-122. PubMed ID: 34178602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat.
    Jin Y; Bouyer J; Haas C; Fischer I
    Exp Neurol; 2014 Jul; 257():57-69. PubMed ID: 24786492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The biomechanical analysis of the traumatic cervical spinal cord injury using finite element approach.
    Czyz M; Scigala K; Jarmundowicz W; Beidziński R
    Acta Bioeng Biomech; 2008; 10(1):43-54. PubMed ID: 18634353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinal cord injury models: a review.
    Cheriyan T; Ryan DJ; Weinreb JH; Cheriyan J; Paul JC; Lafage V; Kirsch T; Errico TJ
    Spinal Cord; 2014 Aug; 52(8):588-95. PubMed ID: 24912546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.