These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26671010)

  • 1. Construction and optimization of an efficient amplification method of a random ssDNA library by asymmetric emulsion PCR.
    Shao K; Shi X; Zhu X; Cui L; Shao Q; Ma D
    Biotechnol Appl Biochem; 2017 Mar; 64(2):239-243. PubMed ID: 26671010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an optimization pipeline of asymmetric PCR towards the generation of DNA aptamers: a guide for beginners.
    Yeoh TS; Anna A; Tang TH; Citartan M
    World J Microbiol Biotechnol; 2022 Jan; 38(2):31. PubMed ID: 34989899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-primer-limited amplification: a method to generate random single-stranded DNA sub-library for aptamer selection.
    He CZ; Zhang KH; Wang T; Wan QS; Hu PP; Hu MD; Huang DQ; Lv NH
    Anal Biochem; 2013 Sep; 440(1):63-70. PubMed ID: 23711720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emulsion PCR: a high efficient way of PCR amplification of random DNA libraries in aptamer selection.
    Shao K; Ding W; Wang F; Li H; Ma D; Wang H
    PLoS One; 2011; 6(9):e24910. PubMed ID: 21949784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-stranded DNA (ssDNA) production in DNA aptamer generation.
    Marimuthu C; Tang TH; Tominaga J; Tan SC; Gopinath SC
    Analyst; 2012 Mar; 137(6):1307-15. PubMed ID: 22314701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect purification method provides high yield and quality ssDNA sublibrary for potential aptamer selection.
    Zhang Y; Xu H; Zhou H; Wu F; Su Y; Liang Y; Zhou D
    Anal Biochem; 2015 May; 476():84-90. PubMed ID: 25747350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different methods for generation of single-stranded DNA for SELEX processes.
    Svobodová M; Pinto A; Nadal P; O' Sullivan CK
    Anal Bioanal Chem; 2012 Aug; 404(3):835-42. PubMed ID: 22733247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cost-Effective Approach for Single-Stranded DNA Amplification Using Primer-Blocked Asymmetric PCR.
    Percze K; Harkai Á; Mészáros T
    Curr Protoc; 2024 Sep; 4(9):e1125. PubMed ID: 39228270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro selection of ssDNA aptamers using biotinylated target proteins.
    Mayer G; Höver T
    Methods Mol Biol; 2009; 535():19-32. PubMed ID: 19377986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Droplet-Based Microfluidic Approach and Microsphere-PCR Amplification for Single-Stranded DNA Amplicons.
    Lee SH; Lee HW; Kim DS; Kwon HG; Lee JH; Kim YH; Jeong OC; Ahn JY
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30507904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emulsion PCR significantly improves nonequilibrium capillary electrophoresis of equilibrium mixtures-based aptamer selection: allowing for efficient and rapid selection of aptamer to unmodified ABH2 protein.
    Yufa R; Krylova SM; Bruce C; Bagg EA; Schofield CJ; Krylov SN
    Anal Chem; 2015 Jan; 87(2):1411-9. PubMed ID: 25495441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the methods for generating single-stranded DNA in SELEX.
    Liang C; Li D; Zhang G; Li H; Shao N; Liang Z; Zhang L; Lu A; Zhang G
    Analyst; 2015 May; 140(10):3439-44. PubMed ID: 25811413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple modification increases specificity and efficiency of asymmetric PCR.
    Tolnai Z; Harkai Á; Szeitner Z; Scholz ÉN; Percze K; Gyurkovics A; Mészáros T
    Anal Chim Acta; 2019 Jan; 1047():225-230. PubMed ID: 30567654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges to design and develop of DNA aptamers for protein targets. I. Optimization of asymmetric PCR for generation of a single stranded DNA library.
    Tabarzad M; Kazemi B; Vahidi H; Aboofazeli R; Shahhosseini S; Nafissi-Varcheh N
    Iran J Pharm Res; 2014; 13(Suppl):133-41. PubMed ID: 24711839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection.
    Zhang WY; Zhang W; Liu Z; Li C; Zhu Z; Yang CJ
    Anal Chem; 2012 Jan; 84(1):350-5. PubMed ID: 22103644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimisation of denaturing ion pair reversed phase HPLC for the purification of ssDNA in SELEX.
    Coombes PE; Dickman MJ
    J Chromatogr A; 2024 Mar; 1719():464699. PubMed ID: 38382212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential strategies to optimize asymmetric PCR conditions as a reliable method to generate large amount of ssDNA aptamers.
    Heiat M; Ranjbar R; Latifi AM; Rasaee MJ; Farnoosh G
    Biotechnol Appl Biochem; 2017 Jul; 64(4):541-548. PubMed ID: 27222205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxymethylcellulose enhances the production of single-stranded DNA aptamers generated by asymmetric PCR.
    Redcenko O; Draberova L; Draber P
    Anal Biochem; 2020 Jan; 589():113502. PubMed ID: 31704088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of aptamers by systematic evolution of ligands by exponential enrichment: addressing the polymerase chain reaction issue.
    Musheev MU; Krylov SN
    Anal Chim Acta; 2006 Mar; 564(1):91-6. PubMed ID: 17723366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.