These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26671218)

  • 1. A fully dynamic multi-compartmental poroelastic system: Application to aqueductal stenosis.
    Chou D; Vardakis JC; Guo L; Tully BJ; Ventikos Y
    J Biomech; 2016 Jul; 49(11):2306-2312. PubMed ID: 26671218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the efficacy of endoscopic ventriculostomy for hydrocephalus treatment via a multicompartmental poroelastic model of CSF transport: a computational perspective.
    Vardakis JC; Tully BJ; Ventikos Y
    PLoS One; 2013; 8(12):e84577. PubMed ID: 24391968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling poroelasticity and CFD for cerebrospinal fluid hydrodynamics.
    Tully B; Ventikos Y
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1644-51. PubMed ID: 19304478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis.
    Jacobson EE; Fletcher DF; Morgan MK; Johnston IH
    Med Biol Eng Comput; 1999 Jan; 37(1):59-63. PubMed ID: 10396843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles.
    Klarica M; Oresković D; Bozić B; Vukić M; Butković V; Bulat M
    Neuroscience; 2009 Feb; 158(4):1397-405. PubMed ID: 19111908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic solution during an infusion test of the linear unsteady poroelastic equations in a spherically symmetric model of the brain.
    Wirth B; Sobey I
    Math Med Biol; 2009 Mar; 26(1):25-61. PubMed ID: 19050059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of non-linear permeability in a spherically symmetric model of hydrocephalus.
    Sobey I; Wirth B
    Math Med Biol; 2006 Dec; 23(4):339-61. PubMed ID: 16740628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of endoscopic third ventriculostomy on cerebrospinal fluid pressure in the cerebral ventricles.
    Farnoush A; Tan K; Juge L; Bilston LE; Cheng S
    J Clin Neurosci; 2016 Jan; 23():63-67. PubMed ID: 26277641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An axisymmetric and fully 3D poroelastic model for the evolution of hydrocephalus.
    Wirth B; Sobey I
    Math Med Biol; 2006 Dec; 23(4):363-88. PubMed ID: 16740629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between ventricular morphology and aqueductal cerebrospinal fluid flow in healthy and communicating hydrocephalus.
    Chiang WW; Takoudis CG; Lee SH; Weis-McNulty A; Glick R; Alperin N
    Invest Radiol; 2009 Apr; 44(4):192-9. PubMed ID: 19300098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response to letter to the editor concerning "A fully dynamic multi-compartmental poroelastic system: Application to aqueductal stenosis".
    Vardakis JC; Chou D; Guo L; Tully BJ; Ventikos Y
    J Biomech; 2017 Jun; 58():243-246. PubMed ID: 28554495
    [No Abstract]   [Full Text] [Related]  

  • 12. Investigating cerebral oedema using poroelasticity.
    Vardakis JC; Chou D; Tully BJ; Hung CC; Lee TH; Tsui PH; Ventikos Y
    Med Eng Phys; 2016 Jan; 38(1):48-57. PubMed ID: 26749338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is Normal Pressure Hydrocephalus more than a mechanical disruption to CSF flow?
    Tully B; Byrne J; Ventikos Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():235-8. PubMed ID: 21096958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Letter to the Editor regarding "A fully dynamic multi-compartmental poroelastic system: Application to aqueductal stenosis", by D. Chou, J.C. Vardakis, L. Guo, B.J. Tully, and Y. Ventikos.
    Mehrabian A; Abousleiman YN
    J Biomech; 2017 Jun; 58():241-242. PubMed ID: 28549602
    [No Abstract]   [Full Text] [Related]  

  • 15. Correlation of CSF flow using phase-contrast MRI with ventriculomegaly and CSF opening pressure in mucopolysaccharidoses.
    Corte AD; de Souza CFM; Anés M; Maeda FK; Lokossou A; Vedolin LM; Longo MG; Ferreira MM; Perrone SGP; Balédent O; Giugliani R
    Fluids Barriers CNS; 2017 Sep; 14(1):23. PubMed ID: 28918752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus.
    Penn RD; Basati S; Sweetman B; Guo X; Linninger A
    J Neurosurg; 2011 Jul; 115(1):159-64. PubMed ID: 21275563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal and hydrocephalic brain dynamics: the role of reduced cerebrospinal fluid reabsorption in ventricular enlargement.
    Linninger AA; Sweetman B; Penn R
    Ann Biomed Eng; 2009 Jul; 37(7):1434-47. PubMed ID: 19373558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low pressure hydrocephalus and ventriculomegaly: hysteresis, non-linear dynamics, and the benefits of CSF diversion.
    Lesniak MS; Clatterbuck RE; Rigamonti D; Williams MA
    Br J Neurosurg; 2002 Dec; 16(6):555-61. PubMed ID: 12617236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indications for neuroendoscopic aqueductoplasty without stenting for obstructive hydrocephalus due to aqueductal stenosis.
    Miki T; Nakajima N; Wada J; Haraoka J
    Minim Invasive Neurosurg; 2005 Jun; 48(3):136-41. PubMed ID: 16015489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-porosity poroviscoelasticity and quantitative hydromechanical characterization of the brain tissue with experimental hydrocephalus data.
    Mehrabian A; Abousleiman YN; Mapstone TB; El-Amm CA
    J Theor Biol; 2015 Nov; 384():19-32. PubMed ID: 26277735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.