BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26671220)

  • 1. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
    Faustino V; Catarino SO; Lima R; Minas G
    J Biomech; 2016 Jul; 49(11):2280-2292. PubMed ID: 26671220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication.
    Smith S; Sypabekova M; Kim S
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-cost, versatile, and highly reproducible microfabrication pipeline to generate 3D-printed customised cell culture devices with complex designs.
    Hagemann C; Bailey MCD; Carraro E; Stankevich KS; Lionello VM; Khokhar N; Suklai P; Moreno-Gonzalez C; O'Toole K; Konstantinou G; Dix CL; Joshi S; Giagnorio E; Bergholt MS; Spicer CD; Imbert A; Tedesco FS; Serio A
    PLoS Biol; 2024 Mar; 22(3):e3002503. PubMed ID: 38478490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft tubular microfluidics for 2D and 3D applications.
    Xi W; Kong F; Yeo JC; Yu L; Sonam S; Dao M; Gong X; Lim CT
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10590-10595. PubMed ID: 28923968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabrication and applications of opto-microfluidic sensors.
    Zhang D; Men L; Chen Q
    Sensors (Basel); 2011; 11(5):5360-82. PubMed ID: 22163904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Prototyping of Soft Lithography Masters for Microfluidic Devices Using Dry Film Photoresist in a Non-Cleanroom Setting.
    Mukherjee P; Nebuloni F; Gao H; Zhou J; Papautsky I
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30875965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms.
    Sanjay ST; Fu G; Dou M; Xu F; Liu R; Qi H; Li X
    Analyst; 2015 Nov; 140(21):7062-81. PubMed ID: 26171467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homebrew Photolithography for the Rapid and Low-Cost, "Do It Yourself" Prototyping of Microfluidic Devices.
    Todd D; Krasnogor N
    ACS Omega; 2023 Sep; 8(38):35393-35409. PubMed ID: 37780017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-step Variable Height Photolithography for Valved Multilayer Microfluidic Devices.
    Brower K; White AK; Fordyce PM
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28190039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct deep UV lithography to micropattern PMMA for stem cell culture.
    Samal P; Kumar Samal JR; Rho HS; van Beurden D; van Blitterswijk C; Truckenmüller R; Giselbrecht S
    Mater Today Bio; 2023 Oct; 22():100779. PubMed ID: 37701129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications.
    Duarte LC; Figueredo F; Chagas CLS; Cortón E; Coltro WKT
    Anal Chim Acta; 2024 Apr; 1299():342429. PubMed ID: 38499426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid, low-cost fabrication of electronic microfluidics via inkjet-printing and xurography (MINX).
    Kikkeri K; Naba FM; Voldman J
    Biosens Bioelectron; 2023 Oct; 237():115499. PubMed ID: 37473550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polycarbonate Masters for Soft Lithography.
    Amadeo F; Mukherjee P; Gao H; Zhou J; Papautsky I
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving High-Precision, Low-Cost Microfluidic Chip Fabrication with Flexible PCB Technology.
    Vanhooydonck A; Caers T; Parrilla M; Delputte P; Watts R
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fast Alternative to Soft Lithography for the Fabrication of Organ-on-a-Chip Elastomeric-Based Devices and Microactuators.
    Ferreira DA; Rothbauer M; Conde JP; Ertl P; Oliveira C; Granja PL
    Adv Sci (Weinh); 2021 Apr; 8(8):2003273. PubMed ID: 33898174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of 3D-Printed Moulds for Soft Lithography of Millifluidic Devices.
    Mohd Fuad N; Carve M; Kaslin J; Wlodkowic D
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms.
    Dou M; Sanjay ST; Benhabib M; Xu F; Li X
    Talanta; 2015 Dec; 145():43-54. PubMed ID: 26459442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Microfluidic Devices for Continuously Monitoring Yeast Aging.
    O'Laughlin R; Forrest E; Hasty J; Hao N
    Bio Protoc; 2023 Aug; 13(15):e4782. PubMed ID: 37575396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Cost-Effective Microfluidic Chip Based on Hybrid Fabrication and Its Comprehensive Characterization.
    Kojic SP; Stojanovic GM; Radonic V
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidics based bioimaging with cost-efficient fabrication of multi-level micrometer-sized trenches.
    Anilkumar A; Batra A; Talukder S; Sharma R
    Biomicrofluidics; 2023 May; 17(3):034103. PubMed ID: 37334275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.