These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26671357)

  • 1. Exciton size and quantum transport in nanoplatelets.
    Pelzer KM; Darling SB; Gray SK; Schaller RD
    J Chem Phys; 2015 Dec; 143(22):224106. PubMed ID: 26671357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stacking in colloidal nanoplatelets: tuning excitonic properties.
    Guzelturk B; Erdem O; Olutas M; Kelestemur Y; Demir HV
    ACS Nano; 2014 Dec; 8(12):12524-33. PubMed ID: 25469555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets.
    Ma X; Diroll BT; Cho W; Fedin I; Schaller RD; Talapin DV; Gray SK; Wiederrecht GP; Gosztola DJ
    ACS Nano; 2017 Sep; 11(9):9119-9127. PubMed ID: 28787569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero-Threshold Optical Gain in Electrochemically Doped Nanoplatelets and the Physics Behind It.
    Geuchies JJ; Dijkhuizen R; Koel M; Grimaldi G; du Fossé I; Evers WH; Hens Z; Houtepen AJ
    ACS Nano; 2022 Nov; 16(11):18777-18788. PubMed ID: 36256901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the In-Plane Exciton Radius in 2D CdSe Nanoplatelets
    Brumberg A; Harvey SM; Philbin JP; Diroll BT; Lee B; Crooker SA; Wasielewski MR; Rabani E; Schaller RD
    ACS Nano; 2019 Aug; 13(8):8589-8596. PubMed ID: 31251582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressing Strong Exciton-Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems.
    Peng S; Wei Q; Wang B; Zhang Z; Yang H; Pang G; Wang K; Xing G; Sun XW; Tang Z
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22156-22162. PubMed ID: 32803819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets.
    Singldinger A; Gramlich M; Gruber C; Lampe C; Urban AS
    ACS Energy Lett; 2020 May; 5(5):1380-1385. PubMed ID: 32421025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient exciton transport between strongly quantum-confined silicon quantum dots.
    Lin Z; Li H; Franceschetti A; Lusk MT
    ACS Nano; 2012 May; 6(5):4029-38. PubMed ID: 22468899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2D Behaviors of Excitons in Cesium Lead Halide Perovskite Nanoplatelets.
    Li J; Luo L; Huang H; Ma C; Ye Z; Zeng J; He H
    J Phys Chem Lett; 2017 Mar; 8(6):1161-1168. PubMed ID: 28229594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent exciton substructure in CdSe nanoplatelets and its relation to photoluminescence dynamics.
    Specht JF; Scott R; Corona Castro M; Christodoulou S; Bertrand GHV; Prudnikau AV; Antanovich A; Siebbeles LDA; Owschimikow N; Moreels I; Artemyev M; Woggon U; Achtstein AW; Richter M
    Nanoscale; 2019 Jul; 11(25):12230-12241. PubMed ID: 31204756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-Independent Exciton Localization Efficiency in Colloidal CdSe/CdS Core/Crown Nanosheet Type-I Heterostructures.
    Li Q; Wu K; Chen J; Chen Z; McBride JR; Lian T
    ACS Nano; 2016 Mar; 10(3):3843-51. PubMed ID: 26872065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced exciton transport in an optical cavity field with spatially varying profile.
    Wei J; Zhao F; Liu J; Zhao Q; Wu N; Xu D
    Phys Rev E; 2019 Jul; 100(1-1):012125. PubMed ID: 31499908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric Screening Modulates Semiconductor Nanoplatelet Excitons.
    Shin AJ; Hossain AA; Tenney SM; Tan X; Tan LA; Foley JJ; Atallah TL; Caram JR
    J Phys Chem Lett; 2021 May; 12(20):4958-4964. PubMed ID: 34010003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient 2D to 0D Energy Transfer in HgTe Nanoplatelet-Quantum Dot Heterostructures through High-Speed Exciton Diffusion.
    Tenney SM; Tan LA; Tan X; Sonnleitner ML; Coffey B; Williams JA; Ronquillo R; Atallah TL; Ahmed T; Caram JR
    J Phys Chem Lett; 2023 Oct; 14(42):9456-9463. PubMed ID: 37830914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial Manganese-Doping in CsPbBr
    Wu L; Wang Y; Kurashvili M; Dey A; Cao M; Döblinger M; Zhang Q; Feldmann J; Huang H; Debnath T
    Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202115852. PubMed ID: 34995399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant Exciton Stokes Shift in Interfacially Prepared Cs(Mn/Pb)Cl
    Das A; Debnath T
    J Phys Chem Lett; 2023 Jun; 14(25):5940-5948. PubMed ID: 37345741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets.
    Tessier MD; Spinicelli P; Dupont D; Patriarche G; Ithurria S; Dubertret B
    Nano Lett; 2014 Jan; 14(1):207-13. PubMed ID: 24328730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonradiative energy transfer in colloidal CdSe nanoplatelet films.
    Guzelturk B; Olutas M; Delikanli S; Kelestemur Y; Erdem O; Demir HV
    Nanoscale; 2015 Feb; 7(6):2545-51. PubMed ID: 25572445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.