These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 26671397)
1. Wetting and dewetting of narrow hydrophobic channels by orthogonal electric fields: Structure, free energy, and dynamics for different water models. Kayal A; Chandra A J Chem Phys; 2015 Dec; 143(22):224708. PubMed ID: 26671397 [TBL] [Abstract][Full Text] [Related]
2. Electric field mediated separation of water-ethanol mixtures in carbon-nanotubes integrated in nanoporous graphene membranes. Borthakur MP; Bandyopadhyay D; Biswas G Faraday Discuss; 2018 Sep; 209(0):259-271. PubMed ID: 29972173 [TBL] [Abstract][Full Text] [Related]
3. Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes. Vaitheeswaran S; Rasaiah JC; Hummer G J Chem Phys; 2004 Oct; 121(16):7955-65. PubMed ID: 15485258 [TBL] [Abstract][Full Text] [Related]
4. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. Su J; Guo H ACS Nano; 2011 Jan; 5(1):351-9. PubMed ID: 21162530 [TBL] [Abstract][Full Text] [Related]
5. Response of water to electric fields at temperatures below the glass transition: a molecular dynamics analysis. Hu X; Elghobashi-Meinhardt N; Gembris D; Smith JC J Chem Phys; 2011 Oct; 135(13):134507. PubMed ID: 21992324 [TBL] [Abstract][Full Text] [Related]
6. Accelerating water transport through a charged SWCNT: a molecular dynamics simulation. Lu D Phys Chem Chem Phys; 2013 Sep; 15(34):14447-57. PubMed ID: 23884179 [TBL] [Abstract][Full Text] [Related]
7. Interfacial structure and wetting properties of water droplets on graphene under a static electric field. Ren H; Zhang L; Li X; Li Y; Wu W; Li H Phys Chem Chem Phys; 2015 Sep; 17(36):23460-7. PubMed ID: 26291298 [TBL] [Abstract][Full Text] [Related]
8. Water conduction through the hydrophobic channel of a carbon nanotube. Hummer G; Rasaiah JC; Noworyta JP Nature; 2001 Nov; 414(6860):188-90. PubMed ID: 11700553 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations. Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447 [TBL] [Abstract][Full Text] [Related]
10. Human aquaporin 4 gating dynamics under and after nanosecond-scale static and alternating electric-field impulses: a molecular dynamics study of field effects and relaxation. Reale R; English NJ; Garate JA; Marracino P; Liberti M; Apollonio F J Chem Phys; 2013 Nov; 139(20):205101. PubMed ID: 24289379 [TBL] [Abstract][Full Text] [Related]
11. Structures of water molecules in carbon nanotubes under electric fields. Winarto ; Takaiwa D; Yamamoto E; Yasuoka K J Chem Phys; 2015 Mar; 142(12):124701. PubMed ID: 25833597 [TBL] [Abstract][Full Text] [Related]
12. Controlling flow direction in nanochannels by electric field strength. Gao X; Zhao T; Li Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023017. PubMed ID: 26382513 [TBL] [Abstract][Full Text] [Related]
13. Water inside a hydrophobic cavitand molecule. Ewell J; Gibb BC; Rick SW J Phys Chem B; 2008 Aug; 112(33):10272-9. PubMed ID: 18661937 [TBL] [Abstract][Full Text] [Related]
14. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores. Bankura A; Chandra A J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519 [TBL] [Abstract][Full Text] [Related]
15. Water transport through functionalized nanotubes with tunable hydrophobicity. Moskowitz I; Snyder MA; Mittal J J Chem Phys; 2014 Nov; 141(18):18C532. PubMed ID: 25399197 [TBL] [Abstract][Full Text] [Related]
16. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet. Rana MK; Chandra A J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495 [TBL] [Abstract][Full Text] [Related]
17. Effects of external electric fields on lysozyme adsorption by molecular dynamics simulations. Xie Y; Liao C; Zhou J Biophys Chem; 2013 Sep; 179():26-34. PubMed ID: 23727988 [TBL] [Abstract][Full Text] [Related]
18. Water properties inside nanoscopic hydrophobic pocket studied by computer simulations. Setny P; Geller M J Chem Phys; 2006 Oct; 125(14):144717. PubMed ID: 17042641 [TBL] [Abstract][Full Text] [Related]
19. Electro-wetting of a nanoscale water droplet on a polar solid surface in electric fields. Song F; Ma L; Fan J; Chen Q; Lei G; Li BQ Phys Chem Chem Phys; 2018 May; 20(17):11987-11993. PubMed ID: 29671435 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen bonded structure, polarity, molecular motion and frequency fluctuations at liquid-vapor interface of a water-methanol mixture: an ab initio molecular dynamics study. Choudhuri JR; Chandra A J Chem Phys; 2014 Oct; 141(13):134703. PubMed ID: 25296824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]