These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 26671733)

  • 1. Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities.
    Zhang S; Xie M; Li F; Yan Z; Li Y; Kan E; Liu W; Chen Z; Zeng H
    Angew Chem Int Ed Engl; 2016 Jan; 55(5):1666-9. PubMed ID: 26671733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two dimensional allotropes of arsenene with a wide range of high and anisotropic carrier mobility.
    Jamdagni P; Thakur A; Kumar A; Ahluwalia PK; Pandey R
    Phys Chem Chem Phys; 2018 Dec; 20(47):29939-29950. PubMed ID: 30475368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions.
    Zhang S; Yan Z; Li Y; Chen Z; Zeng H
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):3112-5. PubMed ID: 25564773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CO monolayer: first-principles design of a new direct band-gap semiconductor with excellent mechanical properties.
    Teng ZW; Liu CS; Yan XH
    Nanoscale; 2017 May; 9(17):5445-5450. PubMed ID: 28177026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Gold Sulfide Monolayers with Direct Band Gap and Ultrahigh Electron Mobility.
    Wu Q; Xu WW; Lin D; Wang J; Zeng XC
    J Phys Chem Lett; 2019 Jul; 10(13):3773-3778. PubMed ID: 31244267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic Structure and Carrier Mobilities of Arsenene and Antimonene Nanoribbons: A First-Principle Study.
    Wang Y; Ding Y
    Nanoscale Res Lett; 2015 Dec; 10(1):955. PubMed ID: 26058516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides.
    Wang J; Shu H; Zhao T; Liang P; Wang N; Cao D; Chen X
    Phys Chem Chem Phys; 2018 Jul; 20(27):18571-18578. PubMed ID: 29953140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin Semiconducting Bi
    Wang B; Niu X; Ouyang Y; Zhou Q; Wang J
    J Phys Chem Lett; 2018 Feb; 9(3):487-490. PubMed ID: 29323907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability, electronic and mechanical properties of chalcogen (Se and Te) monolayers.
    Singh J; Jamdagni P; Jakhar M; Kumar A
    Phys Chem Chem Phys; 2020 Mar; 22(10):5749-5755. PubMed ID: 32104878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional BX (X = P, As, Sb) semiconductors with mobilities approaching graphene.
    Xie M; Zhang S; Cai B; Zhu Z; Zou Y; Zeng H
    Nanoscale; 2016 Jul; 8(27):13407-13. PubMed ID: 27346538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomically thin group v elemental films: theoretical investigations of antimonene allotropes.
    Wang G; Pandey R; Karna SP
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11490-6. PubMed ID: 25955131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional Janus MGeSiP
    Hiep NT; Anh NPQ; Phuc HV; Nguyen CQ; Hieu NN; Vi VTT
    Phys Chem Chem Phys; 2023 Mar; 25(12):8779-8788. PubMed ID: 36912122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low Exciton-Phonon Coupling, High Charge Carrier Mobilities, and Multiexciton Properties in Two-Dimensional Lead, Silver, Cadmium, and Copper Chalcogenide Nanostructures.
    Ding Y; Singh V; Goodman SM; Nagpal P
    J Phys Chem Lett; 2014 Dec; 5(24):4291-7. PubMed ID: 26273976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principle study of seven allotropes of arsenene and antimonene: thermodynamic, electronic and optical properties.
    Zhang B; Zhang H; Lin J; Cheng X
    Phys Chem Chem Phys; 2018 Dec; 20(48):30257-30266. PubMed ID: 30483679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional silicon crystals with sizable band gaps and ultrahigh carrier mobility.
    Zhuo Z; Wu X; Yang J
    Nanoscale; 2018 Jan; 10(3):1265-1271. PubMed ID: 29292469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure dependent optoelectronic properties of monolayer antimonene, bismuthene and their binary compound.
    Kecik D; Özçelik VO; Durgun E; Ciraci S
    Phys Chem Chem Phys; 2019 Apr; 21(15):7907-7917. PubMed ID: 30916065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator.
    Zhang S; Zhou W; Ma Y; Ji J; Cai B; Yang SA; Zhu Z; Chen Z; Zeng H
    Nano Lett; 2017 Jun; 17(6):3434-3440. PubMed ID: 28460176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moderate direct band-gap energies and high carrier mobilities of Janus XWSiP
    Nguyen HT; Cuong NQ; Vi VTT; Hieu NN; Tran LPT
    Phys Chem Chem Phys; 2023 Aug; 25(32):21468-21478. PubMed ID: 37539527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper halide diselenium: predicted two-dimensional materials with ultrahigh anisotropic carrier mobilities.
    Shojaei F; Azizi M; Mahdavifar Z; Wang B; Frapper G
    RSC Adv; 2020 Feb; 10(14):8016-8026. PubMed ID: 35497853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation Resistance of Monolayer Group-IV Monochalcogenides.
    Guo Y; Zhou S; Bai Y; Zhao J
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):12013-12020. PubMed ID: 28286942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.