These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 26671817)
1. Model Order and Identifiability of Non-Linear Biological Systems in Stable Oscillation. Wigren T IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1479-84. PubMed ID: 26671817 [TBL] [Abstract][Full Text] [Related]
2. Nonlinear dynamics of the membrane potential of a bursting pacemaker cell. González-Miranda JM Chaos; 2012 Mar; 22(1):013123. PubMed ID: 22462999 [TBL] [Abstract][Full Text] [Related]
3. Emergence of chaotic attractor and anti-synchronization for two coupled monostable neurons. Courbage M; Kazantsev VB; Nekorkin VI; Senneret M Chaos; 2004 Dec; 14(4):1148-56. PubMed ID: 15568928 [TBL] [Abstract][Full Text] [Related]
4. Stochastic resonance in a Hodgkin-Huxley neuron in the absence of external noise. Chik DT; Wang Y; Wang ZD Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021913. PubMed ID: 11497626 [TBL] [Abstract][Full Text] [Related]
5. Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Shilnikov A; Cymbalyuk G Phys Rev Lett; 2005 Feb; 94(4):048101. PubMed ID: 15783604 [TBL] [Abstract][Full Text] [Related]
6. Bistability induces episodic spike communication by inhibitory neurons in neuronal networks. Kazantsev VB; Asatryan SY Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031913. PubMed ID: 22060409 [TBL] [Abstract][Full Text] [Related]
8. Synchronization in networks with random interactions: theory and applications. Feng J; Jirsa VK; Ding M Chaos; 2006 Mar; 16(1):015109. PubMed ID: 16599775 [TBL] [Abstract][Full Text] [Related]
9. Bifurcation analysis of delay-induced patterns in a ring of Hodgkin-Huxley neurons. Kantner M; Yanchuk S Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120470. PubMed ID: 23960228 [TBL] [Abstract][Full Text] [Related]
10. Layered synchronous propagation of noise-induced chaotic spikes in linear arrays. Qi GX; Huang HB; Wang HJ; Xie X; Yang P; Zhang YJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021916. PubMed ID: 16196613 [TBL] [Abstract][Full Text] [Related]
11. Two-dimensional variation of bursting properties in a silicon-neuron half-center oscillator. Simoni MF; DeWeerth SP IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):281-9. PubMed ID: 17009487 [TBL] [Abstract][Full Text] [Related]
12. Bifurcation analysis of mode-locking structure in a Hodgkin-Huxley neuron under sinusoidal current. Lee SG; Kim S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041924. PubMed ID: 16711853 [TBL] [Abstract][Full Text] [Related]
13. Tunable oscillations in the Purkinje neuron. Abrams ZR; Warrier A; Wang Y; Trauner D; Zhang X Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041905. PubMed ID: 22680496 [TBL] [Abstract][Full Text] [Related]
14. On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs. Gerhard F; Deger M; Truccolo W PLoS Comput Biol; 2017 Feb; 13(2):e1005390. PubMed ID: 28234899 [TBL] [Abstract][Full Text] [Related]
15. Harmonics and intermodulation in subthreshold FitzHugh-Nagumo neuron. Si W; Wang J; Tsang KM; Chan WL Chaos; 2009 Sep; 19(3):033144. PubMed ID: 19792024 [TBL] [Abstract][Full Text] [Related]
16. Spike trains in a stochastic Hodgkin-Huxley system. Henry C T Biosystems; 2005 Apr; 80(1):25-36. PubMed ID: 15740832 [TBL] [Abstract][Full Text] [Related]
17. Bottom-up approach to torus bifurcation in neuron models. Ju H; Neiman AB; Shilnikov AL Chaos; 2018 Oct; 28(10):106317. PubMed ID: 30384623 [TBL] [Abstract][Full Text] [Related]
18. Stationary oscillation of an impulsive delayed system and its application to chaotic neural networks. Sun J; Lin H Chaos; 2008 Sep; 18(3):033127. PubMed ID: 19045465 [TBL] [Abstract][Full Text] [Related]
19. From spiking neurons to rate models: a cascade model as an approximation to spiking neuron models with refractoriness. Aviel Y; Gerstner W Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051908. PubMed ID: 16802968 [TBL] [Abstract][Full Text] [Related]
20. Complex dynamics of a single neuron model. Popovych S; Gail A; Schropp J Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041914. PubMed ID: 17155103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]