BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 26671821)

  • 81. A rapid, safe, and quantitative in vitro assay for measurement of uracil-DNA glycosylase activity.
    Squillaro T; Finicelli M; Alessio N; Del Gaudio S; Di Bernardo G; Melone MAB; Peluso G; Galderisi U
    J Mol Med (Berl); 2019 Jul; 97(7):991-1001. PubMed ID: 31041464
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Detection of damaged DNA bases by DNA glycosylase enzymes.
    Friedman JI; Stivers JT
    Biochemistry; 2010 Jun; 49(24):4957-67. PubMed ID: 20469926
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Formation and processing of DNA damage substrates for the hNEIL enzymes.
    Fleming AM; Burrows CJ
    Free Radic Biol Med; 2017 Jun; 107():35-52. PubMed ID: 27880870
    [TBL] [Abstract][Full Text] [Related]  

  • 84. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup.
    Kavli B; Sundheim O; Akbari M; Otterlei M; Nilsen H; Skorpen F; Aas PA; Hagen L; Krokan HE; Slupphaug G
    J Biol Chem; 2002 Oct; 277(42):39926-36. PubMed ID: 12161446
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Differential modes of DNA binding by mismatch uracil DNA glycosylase from Escherichia coli: implications for abasic lesion processing and enzyme communication in the base excision repair pathway.
    Grippon S; Zhao Q; Robinson T; Marshall JJ; O'Neill RJ; Manning H; Kennedy G; Dunsby C; Neil M; Halford SE; French PM; Baldwin GS
    Nucleic Acids Res; 2011 Apr; 39(7):2593-603. PubMed ID: 21112870
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Genomic Instability of G-Quadruplex Sequences in
    Parekh VJ; Węgrzyn G; Arluison V; Sinden RR
    Genes (Basel); 2023 Aug; 14(9):. PubMed ID: 37761860
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Deficient uracil base excision repair leads to persistent dUMP in HIV proviruses during infection of monocytes and macrophages.
    Meshesha M; Esadze A; Cui J; Churgulia N; Sahu SK; Stivers JT
    PLoS One; 2020; 15(7):e0235012. PubMed ID: 32663205
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Plant mitochondria possess a short-patch base excision DNA repair pathway.
    Boesch P; Ibrahim N; Paulus F; Cosset A; Tarasenko V; Dietrich A
    Nucleic Acids Res; 2009 Sep; 37(17):5690-700. PubMed ID: 19625491
    [TBL] [Abstract][Full Text] [Related]  

  • 89. NEIL1 is the major DNA glycosylase that processes 5-hydroxyuracil in the proximity of a DNA single-strand break.
    Parsons JL; Kavli B; Slupphaug G; Dianov GL
    Biochemistry; 2007 Apr; 46(13):4158-63. PubMed ID: 17348689
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Covalent binding of uracil DNA glycosylase UdgX to abasic DNA upon uracil excision.
    Ahn WC; Aroli S; Kim JH; Moon JH; Lee GS; Lee MH; Sang PB; Oh BH; Varshney U; Woo EJ
    Nat Chem Biol; 2019 Jun; 15(6):607-614. PubMed ID: 31101917
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Disordered N-Terminal Domain of Human Uracil DNA Glycosylase (hUNG2) Enhances DNA Translocation.
    Rodriguez G; Esadze A; Weiser BP; Schonhoft JD; Cole PA; Stivers JT
    ACS Chem Biol; 2017 Sep; 12(9):2260-2263. PubMed ID: 28787572
    [TBL] [Abstract][Full Text] [Related]  

  • 92. DNA translocation by human uracil DNA glycosylase: the case of single-stranded DNA and clustered uracils.
    Schonhoft JD; Stivers JT
    Biochemistry; 2013 Apr; 52(15):2536-44. PubMed ID: 23506270
    [TBL] [Abstract][Full Text] [Related]  

  • 93. New family of deamination repair enzymes in uracil-DNA glycosylase superfamily.
    Lee HW; Dominy BN; Cao W
    J Biol Chem; 2011 Sep; 286(36):31282-7. PubMed ID: 21642431
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Monitoring eukaryotic and bacterial UDG repair activity with DNA-multifluorophore sensors.
    Ono T; Edwards SK; Wang S; Jiang W; Kool ET
    Nucleic Acids Res; 2013 Jul; 41(12):e127. PubMed ID: 23644286
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription.
    Cogoi S; Ferino A; Miglietta G; Pedersen EB; Xodo LE
    Nucleic Acids Res; 2018 Jan; 46(2):661-676. PubMed ID: 29165690
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Interplay of Guanine Oxidation and G-Quadruplex Folding in Gene Promoters.
    Fleming AM; Burrows CJ
    J Am Chem Soc; 2020 Jan; 142(3):1115-1136. PubMed ID: 31880930
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The N-terminal domain of uracil-DNA glycosylase: Roles for disordered regions.
    Perkins JL; Zhao L
    DNA Repair (Amst); 2021 May; 101():103077. PubMed ID: 33640758
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Colorimetric Assay for Uracil DNA Glycosylase Activity Based on Toehold-Mediated Strand Displacement Circuit.
    Kim Y; Park Y; Lee CY; Park HG
    Biotechnol J; 2020 Mar; 15(3):e1900420. PubMed ID: 31657505
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Assay design for analysis of human uracil DNA glycosylase.
    Kulkarni RS; Greenwood SN; Weiser BP
    Methods Enzymol; 2023; 679():343-362. PubMed ID: 36682870
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Characterisation of the substrate specificity of homogeneous vaccinia virus uracil-DNA glycosylase.
    Scaramozzino N; Sanz G; Crance JM; Saparbaev M; Drillien R; Laval J; Kavli B; Garin D
    Nucleic Acids Res; 2003 Aug; 31(16):4950-7. PubMed ID: 12907738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.