These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26672033)

  • 1. Human Visual System-Based Fundus Image Quality Assessment of Portable Fundus Camera Photographs.
    Wang S; Jin K; Lu H; Cheng C; Ye J; Qian D
    IEEE Trans Med Imaging; 2016 Apr; 35(4):1046-55. PubMed ID: 26672033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Telemedicine screening of retinal diseases with a handheld portable non-mydriatic fundus camera.
    Jin K; Lu H; Su Z; Cheng C; Ye J; Qian D
    BMC Ophthalmol; 2017 Jun; 17(1):89. PubMed ID: 28610611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a portable fundus camera for use in the teleophthalmologic diagnosis of glaucoma.
    Yogesan K; Constable IJ; Barry CJ; Eikelboom RH; Morgan W; Tay-Kearney ML; Jitskaia L
    J Glaucoma; 1999 Oct; 8(5):297-301. PubMed ID: 10529928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microaneurysms detection in color fundus images using machine learning based on directional local contrast.
    Long S; Chen J; Hu A; Liu H; Chen Z; Zheng D
    Biomed Eng Online; 2020 Apr; 19(1):21. PubMed ID: 32295576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.
    Jaya T; Dheeba J; Singh NA
    J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diabetic retinopathy screening using digital non-mydriatic fundus photography and automated image analysis.
    Hansen AB; Hartvig NV; Jensen MS; Borch-Johnsen K; Lund-Andersen H; Larsen M
    Acta Ophthalmol Scand; 2004 Dec; 82(6):666-72. PubMed ID: 15606461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Identification of Diabetic Retinopathy Using Deep Learning.
    Gargeya R; Leng T
    Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of digital retinal image quality among photographers with different levels of training using a non-mydriatic fundus camera.
    Maberley D; Morris A; Hay D; Chang A; Hall L; Mandava N
    Ophthalmic Epidemiol; 2004 Jul; 11(3):191-7. PubMed ID: 15370551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CycleGAN-based deep learning technique for artifact reduction in fundus photography.
    Yoo TK; Choi JY; Kim HK
    Graefes Arch Clin Exp Ophthalmol; 2020 Aug; 258(8):1631-1637. PubMed ID: 32361805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of an inexpensive, hand-held fundus camera through modification of a consumer "point-and-shoot" camera.
    Tran K; Mendel TA; Holbrook KL; Yates PA
    Invest Ophthalmol Vis Sci; 2012 Nov; 53(12):7600-7. PubMed ID: 23049089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification.
    Hua CH; Huynh-The T; Kim K; Yu SY; Le-Tien T; Park GH; Bang J; Khan WA; Bae SH; Lee S
    Int J Med Inform; 2019 Dec; 132():103926. PubMed ID: 31605882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs.
    Liu S; Graham SL; Schulz A; Kalloniatis M; Zangerl B; Cai W; Gao Y; Chua B; Arvind H; Grigg J; Chu D; Klistorner A; You Y
    Ophthalmol Glaucoma; 2018; 1(1):15-22. PubMed ID: 32672627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic drusen quantification and risk assessment of age-related macular degeneration on color fundus images.
    van Grinsven MJ; Lechanteur YT; van de Ven JP; van Ginneken B; Hoyng CB; Theelen T; Sánchez CI
    Invest Ophthalmol Vis Sci; 2013 Apr; 54(4):3019-27. PubMed ID: 23572106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated quality evaluation of digital fundus photographs.
    Bartling H; Wanger P; Martin L
    Acta Ophthalmol; 2009 Sep; 87(6):643-7. PubMed ID: 19719806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iterative Vessel Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1738-49. PubMed ID: 25700436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE J Biomed Health Inform; 2015 May; 19(3):1118-28. PubMed ID: 25014980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joslin Vision Network Validation Study: pilot image stabilization phase.
    Aiello LM; Bursell SE; Cavallerano J; Gardner WK; Strong J
    J Am Optom Assoc; 1998 Nov; 69(11):699-710. PubMed ID: 9844322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIDDEN INFORMATION IN COLOR FUNDUS PHOTOGRAPHS IS REVEALED BY THE DECORRELATION STRETCHING METHOD.
    Uji A; Muraoka Y; Yoshimura N
    Retin Cases Brief Rep; 2019 Spring; 13(2):176-180. PubMed ID: 28234782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital fundus image grading with the non-mydriatic Visucam(PRO NM) versus the FF450(plus) camera in diabetic retinopathy.
    Neubauer AS; Rothschuh A; Ulbig MW; Blum M
    Acta Ophthalmol; 2008 Mar; 86(2):177-82. PubMed ID: 17944975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.