These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 26672383)
1. The role of octopamine receptor agonists in the synergistic toxicity of certain insect growth regulators (IGRs) in controlling Dengue vector Aedes aegypti (Diptera: Culicidae) mosquito. Ahmed MA; Vogel CF Acta Trop; 2016 Mar; 155():1-5. PubMed ID: 26672383 [TBL] [Abstract][Full Text] [Related]
2. Synergistic action of octopamine receptor agonists on the activity of selected novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae) mosquito. Ahmed MA; Vogel CF Pestic Biochem Physiol; 2015 May; 120():51-6. PubMed ID: 25987220 [TBL] [Abstract][Full Text] [Related]
3. Unique biochemical and molecular biological mechanism of synergistic actions of formamidine compounds on selected pyrethroid and neonicotinoid insecticides on the fourth instar larvae of Aedes aegypti (Diptera: Culicidae). Ahmed MA; Vogel CF; Matsumura F Pestic Biochem Physiol; 2015 May; 120():57-63. PubMed ID: 25987221 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae). Paul A; Harrington LC; Scott JG J Med Entomol; 2006 Jan; 43(1):55-60. PubMed ID: 16506447 [TBL] [Abstract][Full Text] [Related]
5. The synergistic effect of octopamine receptor agonists on selected insect growth regulators on Ahmed MAI; Vogel CFA One Health; 2020 Dec; 10():100138. PubMed ID: 32426446 [TBL] [Abstract][Full Text] [Related]
6. Synergistic actions of formamidine insecticides on the activity of pyrethroids and neonicotinoids against Aedes aegypti (Diptera: Culicidae). Ahmed MA; Matsumura F J Med Entomol; 2012 Nov; 49(6):1405-10. PubMed ID: 23270169 [TBL] [Abstract][Full Text] [Related]
7. Toxicological Evaluation of Novel Butenolide Pesticide Flupyradifurone Against Culex quinquefasciatus (Diptera: Culicidae) Mosquitoes. Ahmed MAI; Vogel CFA J Med Entomol; 2020 Nov; 57(6):1857-1863. PubMed ID: 32566941 [TBL] [Abstract][Full Text] [Related]
8. Insecticide resistance and, efficacy of space spraying and larviciding in the control of dengue vectors Aedes aegypti and Aedes albopictus in Sri Lanka. Karunaratne SH; Weeraratne TC; Perera MD; Surendran SN Pestic Biochem Physiol; 2013 Sep; 107(1):98-105. PubMed ID: 25149242 [TBL] [Abstract][Full Text] [Related]
9. Mosquitocidal Chips Containing the Insect Growth Regulator Pyriproxyfen for Control of Stevens KC; Pereira RM; Koehler PG Int J Environ Res Public Health; 2019 Jun; 16(12):. PubMed ID: 31216627 [No Abstract] [Full Text] [Related]
10. Evaluation of Insect Growth Regulators Against Field-Collected Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Malaysia. Lau KW; Chen CD; Lee HL; Norma-Rashid Y; Sofian-Azirun M J Med Entomol; 2015 Mar; 52(2):199-206. PubMed ID: 26336304 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Insect Growth Regulators (IGRs) as biological pesticides for control of Aedes aegypti mosquitoes. Ur Rahman A; Khan I; Usman A; Khan H J Vector Borne Dis; 2024 Jan; 61(1):129-135. PubMed ID: 38648415 [TBL] [Abstract][Full Text] [Related]
12. The biological effects of the insect growth regulators; pyriproxyfen and diflubenzuron on the mosquito Aedes aegypti. Kamal HA; Khater EI J Egypt Soc Parasitol; 2010 Dec; 40(3):565-74. PubMed ID: 21268527 [TBL] [Abstract][Full Text] [Related]
13. Impact of insecticide interventions on the abundance and resistance profile of Aedes aegypti. Luz PM; Codeço CT; Medlock J; Struchiner CJ; Valle D; Galvani AP Epidemiol Infect; 2009 Aug; 137(8):1203-15. PubMed ID: 19134235 [TBL] [Abstract][Full Text] [Related]
14. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Suresh U; Murugan K; Benelli G; Nicoletti M; Barnard DR; Panneerselvam C; Kumar PM; Subramaniam J; Dinesh D; Chandramohan B Parasitol Res; 2015 Apr; 114(4):1551-62. PubMed ID: 25669140 [TBL] [Abstract][Full Text] [Related]
15. Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae. Darriet F; Corbel V J Med Entomol; 2006 Nov; 43(6):1190-4. PubMed ID: 17162952 [TBL] [Abstract][Full Text] [Related]
16. The impact of insect growth regulators on adult emergence inhibition and the fitness of Aedes aegypti field populations in Thailand. Fansiri T; Pongsiri A; Khongtak P; Nitatsukprasert C; Chittham W; Jaichapor B; Pathawong N; Kijchalao U; Tiangtrong S; Singkhaimuk P; Ponlawat A Acta Trop; 2022 Dec; 236():106695. PubMed ID: 36122761 [TBL] [Abstract][Full Text] [Related]
17. Bottle and biochemical assays on temephos resistance in Aedes aegypti in Thailand. Saelim V; Brogdon WG; Rojanapremsuk J; Suvannadabba S; Pandii W; Jones JW; Sithiprasasna R Southeast Asian J Trop Med Public Health; 2005 Mar; 36(2):417-25. PubMed ID: 15916049 [TBL] [Abstract][Full Text] [Related]
18. Exploring new thermal fog and ultra-low volume technologies to improve indoor control of the dengue vector, Aedes aegypti (Diptera: Culicidae). Harwood JF; Farooq M; Richardson AG; Doud CW; Putnam JL; Szumlas DE; Richardson JH J Med Entomol; 2014 Jul; 51(4):845-54. PubMed ID: 25118418 [TBL] [Abstract][Full Text] [Related]
19. Insecticidal compounds from Rhizophoraceae mangrove plants for the management of dengue vector Aedes aegypti. Ali MS; Ravikumar S; Beula JM; Anuradha V; Yogananth N J Vector Borne Dis; 2014 Jun; 51(2):106-14. PubMed ID: 24947217 [TBL] [Abstract][Full Text] [Related]
20. Determination of Insecticidal Effect (LC50 and LC90) of Organic Fatty Acids Mixture (C8910+Silicone) Against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Dunford JC; Falconer A; Leite LN; Wirtz RA; Brogdon WG J Med Entomol; 2016 May; 53(3):699-702. PubMed ID: 26718717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]