These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 26672388)
21. A Stilbenoid-Specific Prenyltransferase Utilizes Dimethylallyl Pyrophosphate from the Plastidic Terpenoid Pathway. Yang T; Fang L; Rimando AM; Sobolev V; Mockaitis K; Medina-Bolivar F Plant Physiol; 2016 Aug; 171(4):2483-98. PubMed ID: 27356974 [TBL] [Abstract][Full Text] [Related]
22. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds. Korani WA; Chu Y; Holbrook C; Clevenger J; Ozias-Akins P Toxins (Basel); 2017 Jul; 9(7):. PubMed ID: 28704974 [TBL] [Abstract][Full Text] [Related]
23. Increased susceptibility and reduced phytoalexin accumulation in drought-stressed peanut kernels challenged with Aspergillus flavus. Wotton HR; Strange RN Appl Environ Microbiol; 1987 Feb; 53(2):270-3. PubMed ID: 3105455 [TBL] [Abstract][Full Text] [Related]
24. Determination of the phytoalexin resveratrol (3,5,4'-trihydroxystilbene) in peanuts and pistachios by high-performance liquid chromatographic diode array (HPLC-DAD) and gas chromatography-mass spectrometry (GC-MS). Tokuşoglu O; Unal MK; Yemiş F J Agric Food Chem; 2005 Jun; 53(12):5003-9. PubMed ID: 15941348 [TBL] [Abstract][Full Text] [Related]
25. Polyphasic approach to the identification and characterization of aflatoxigenic strains of Aspergillus section Flavi isolated from peanuts and peanut-based products marketed in Malaysia. Norlia M; Jinap S; Nor-Khaizura MAR; Son R; Chin CK; Sardjono Int J Food Microbiol; 2018 Oct; 282():9-15. PubMed ID: 29885975 [TBL] [Abstract][Full Text] [Related]
26. Antioxidant Assessment of Prenylated Stilbenoid-Rich Extracts from Elicited Hairy Root Cultures of Three Cultivars of Peanut ( Gajurel G; Hasan R; Medina-Bolivar F Molecules; 2021 Nov; 26(22):. PubMed ID: 34833870 [TBL] [Abstract][Full Text] [Related]
27. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L). Wang T; Zhang E; Chen X; Li L; Liang X BMC Plant Biol; 2010 Nov; 10():267. PubMed ID: 21118527 [TBL] [Abstract][Full Text] [Related]
28. Study of the genetic diversity of the aflatoxin biosynthesis cluster in Aspergillus section Flavi using insertion/deletion markers in peanut seeds from Georgia, USA. Faustinelli PC; Palencia ER; Sobolev VS; Horn BW; Sheppard HT; Lamb MC; Wang XM; Scheffler BE; Martinez Castillo J; Arias RS Mycologia; 2017; 109(2):200-209. PubMed ID: 28506119 [TBL] [Abstract][Full Text] [Related]
29. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. Guo B; Chen X; Dang P; Scully BT; Liang X; Holbrook CC; Yu J; Culbreath AK BMC Dev Biol; 2008 Feb; 8():12. PubMed ID: 18248674 [TBL] [Abstract][Full Text] [Related]
30. Co-overexpression of Brassica juncea NPR1 (BjNPR1) and Trigonella foenum-graecum defensin (Tfgd) in transgenic peanut provides comprehensive but varied protection against Aspergillus flavus and Cercospora arachidicola. Sundaresha S; Rohini S; Appanna VK; Arthikala MK; Shanmugam NB; Shashibhushan NB; Kishore CM; Pannerselvam R; Kirti PB; Udayakumar M Plant Cell Rep; 2016 May; 35(5):1189-203. PubMed ID: 26956134 [TBL] [Abstract][Full Text] [Related]
31. Colonization of wounded peanut seeds by soil fungi: selectivity for species from Aspergillus section Flavi. Horn BW Mycologia; 2005; 97(1):202-17. PubMed ID: 16389972 [TBL] [Abstract][Full Text] [Related]
32. Water-deficit stress induces prenylated stilbenoid production and affects biomass in peanut hairy roots: Exploring the role of stilbenoid prenyltransferase downregulation. Gajurel G; Hasan R; Medina-Bolivar F Plant Physiol Biochem; 2024 May; 210():108596. PubMed ID: 38579541 [TBL] [Abstract][Full Text] [Related]
33. Proteomic analysis reveals an aflatoxin-triggered immune response in cotyledons of Arachis hypogaea infected with Aspergillus flavus. Wang Z; Yan S; Liu C; Chen F; Wang T J Proteome Res; 2012 May; 11(5):2739-53. PubMed ID: 22424419 [TBL] [Abstract][Full Text] [Related]
34. The biodiversity of Aspergillus section Flavi and aflatoxins in the Brazilian peanut production chain. Martins LM; Sant'Ana AS; Fungaro MH; Silva JJ; Nascimento MD; Frisvad JC; Taniwaki MH Food Res Int; 2017 Apr; 94():101-107. PubMed ID: 28290359 [TBL] [Abstract][Full Text] [Related]
35. Rapid and simultaneous in situ assessment of aflatoxins and stilbenes using silica plate imprinting mass spectrometry imaging. de Oliveira DN; Ferreira MS; Catharino RR PLoS One; 2014; 9(3):e90901. PubMed ID: 24595464 [TBL] [Abstract][Full Text] [Related]
36. RNA Sequencing of Contaminated Seeds Reveals the State of the Seed Permissive for Pre-Harvest Aflatoxin Contamination and Points to a Potential Susceptibility Factor. Clevenger J; Marasigan K; Liakos V; Sobolev V; Vellidis G; Holbrook C; Ozias-Akins P Toxins (Basel); 2016 Nov; 8(11):. PubMed ID: 27827875 [TBL] [Abstract][Full Text] [Related]
38. Induction of the Prenylated Stilbenoids Arachidin-1 and Arachidin-3 and Their Semi-Preparative Separation and Purification from Hairy Root Cultures of Peanut ( Sharma AR; Gajurel G; Ahmed I; Roedel K; Medina-Bolivar F Molecules; 2022 Sep; 27(18):. PubMed ID: 36144847 [TBL] [Abstract][Full Text] [Related]
39. [A SCAR marker for resistance to Aspergillus flavus in peanut (Arachis hypogaea L.)]. Lei Y; Liao BS; Wang SY; Zhang YB; Li D; Jiang HF Yi Chuan; 2006 Sep; 28(9):1107-11. PubMed ID: 16963420 [TBL] [Abstract][Full Text] [Related]
40. Interrelationship of phytoalexin production and disease resistance in selected peanut genotypes. Sobolev VS; Guo BZ; Holbrook CC; Lynch RE J Agric Food Chem; 2007 Mar; 55(6):2195-200. PubMed ID: 17326657 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]