These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26672461)

  • 1. Influence of immobilization strategies on biosensing response characteristics: A comparative study.
    Kaur G; Saha S; Tomar M; Gupta V
    Enzyme Microb Technol; 2016 Jan; 82():144-150. PubMed ID: 26672461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of cholesterol oxidase on cellulose acetate membrane for free cholesterol biosensor development.
    Wang S; Li S; Yu Y
    Artif Cells Blood Substit Immobil Biotechnol; 2004; 32(3):413-25. PubMed ID: 15508278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor.
    Singh S; Singhal R; Malhotra BD
    Anal Chim Acta; 2007 Jan; 582(2):335-43. PubMed ID: 17386511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures.
    Umar A; Rahman MM; Al-Hajry A; Hahn YB
    Talanta; 2009 Apr; 78(1):284-9. PubMed ID: 19174239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophoretically deposited polyaniline nanotubes based film for cholesterol detection.
    Dhand C; Solanki PR; Pandey MK; Datta M; Malhotra BD
    Electrophoresis; 2010 Nov; 31(22):3754-62. PubMed ID: 21077243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of Cholesterol Oxidase from Streptomyces Sp. on Magnetite Silicon Dioxide by Crosslinking Method for Cholesterol Oxidation.
    Perdani MS; Sahlan M; Yohda M; Hermansyah H
    Appl Biochem Biotechnol; 2020 Jul; 191(3):968-980. PubMed ID: 31950444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, characterization and application of polyaniline nanospheres to biosensing.
    Dhand C; Das M; Sumana G; Srivastava AK; Pandey MK; Kim CG; Datta M; Malhotra BD
    Nanoscale; 2010 May; 2(5):747-54. PubMed ID: 20648320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization strategies to develop enzymatic biosensors.
    Sassolas A; Blum LJ; Leca-Bouvier BD
    Biotechnol Adv; 2012; 30(3):489-511. PubMed ID: 21951558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sepiolite modified conducting polymer based biosensor.
    Soylemez S; Kanik FE; Tarkuc S; Udum YA; Toppare L
    Colloids Surf B Biointerfaces; 2013 Nov; 111():549-55. PubMed ID: 23893029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization and stabilization of cholesterol oxidase on modified sepharose particles.
    Chen Y; Xin Y; Yang H; Zhang L; Zhang Y; Xia X; Tong Y; Wang W
    Int J Biol Macromol; 2013 May; 56():6-13. PubMed ID: 23395650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-based amperometric galactose biosensors: a review.
    Kanyong P; Krampa FD; Aniweh Y; Awandare GA
    Mikrochim Acta; 2017; 184(10):3663-3671. PubMed ID: 28979051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dual enzyme functionalized nanostructured thulium oxide based interface for biomedical application.
    Singh J; Roychoudhury A; Srivastava M; Solanki PR; Lee DW; Lee SH; Malhotra BD
    Nanoscale; 2014 Jan; 6(2):1195-208. PubMed ID: 24301799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples.
    Saxena U; Chakraborty M; Goswami P
    Biosens Bioelectron; 2011 Feb; 26(6):3037-43. PubMed ID: 21195602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel biosensor based on a conducting polymer.
    Soylemez S; Ekiz Kanik F; Ileri M; Hacioglu SO; Toppare L
    Talanta; 2014 Jan; 118():84-9. PubMed ID: 24274273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent enzyme immobilization by poly(ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation.
    Vasylieva N; Barnych B; Meiller A; Maucler C; Pollegioni L; Lin JS; Barbier D; Marinesco S
    Biosens Bioelectron; 2011 Jun; 26(10):3993-4000. PubMed ID: 21546239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity.
    Salimi A; Sharifi E; Noorbakhsh A; Soltanian S
    Biosens Bioelectron; 2007 Jun; 22(12):3146-53. PubMed ID: 17368016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications.
    Hood AR; Saurakhiya N; Deva D; Sharma A; Verma N
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4313-22. PubMed ID: 23910348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of enzymes: a literature survey.
    Brena B; González-Pombo P; Batista-Viera F
    Methods Mol Biol; 2013; 1051():15-31. PubMed ID: 23934795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomolecular immobilization on conducting polymers for biosensing applications.
    Ahuja T; Mir IA; Kumar D; Rajesh
    Biomaterials; 2007 Feb; 28(5):791-805. PubMed ID: 17055573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-amino acid biosensor based on L-amino acid oxidase immobilized onto NiHCNFe/c-MWCNT/PPy/GC electrode.
    Lata S; Pundir CS
    Int J Biol Macromol; 2013 Mar; 54():250-7. PubMed ID: 23237796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.