These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26672481)

  • 1. Identification of RNA aptamers with riboswitching properties.
    Schneider C; Suess B
    Methods; 2016 Mar; 97():44-50. PubMed ID: 26672481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Changes in Aptamers are Essential for Synthetic Riboswitch Engineering.
    Hoetzel J; Suess B
    J Mol Biol; 2022 Sep; 434(18):167631. PubMed ID: 35595164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Method to Identify Synthetic Riboswitches Using RNA-Based Capture-SELEX Combined with In Vivo Screening.
    Kramat J; Suess B
    Methods Mol Biol; 2022; 2518():157-177. PubMed ID: 35666445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What defines a synthetic riboswitch? - Conformational dynamics of ciprofloxacin aptamers with similar binding affinities but varying regulatory potentials.
    Kaiser C; Schneider J; Groher F; Suess B; Wachtveitl J
    Nucleic Acids Res; 2021 Apr; 49(7):3661-3671. PubMed ID: 33772594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro selection of RNA aptamers for a small-molecule dye.
    Murata A; Sato S
    Methods Mol Biol; 2014; 1111():17-28. PubMed ID: 24549609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro selection of antibiotic-binding aptamers.
    Groher F; Suess B
    Methods; 2016 Aug; 106():42-50. PubMed ID: 27223401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-level riboswitch development-implementation of Capture-SELEX facilitates identification of a new synthetic riboswitch.
    Boussebayle A; Torka D; Ollivaud S; Braun J; Bofill-Bosch C; Dombrowski M; Groher F; Hamacher K; Suess B
    Nucleic Acids Res; 2019 May; 47(9):4883-4895. PubMed ID: 30957848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tapping the potential of synthetic riboswitches: reviewing the versatility of the tetracycline aptamer.
    Kelvin D; Suess B
    RNA Biol; 2023 Jan; 20(1):457-468. PubMed ID: 37459466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular arrangement of regulatory RNA elements.
    Roßmanith J; Narberhaus F
    RNA Biol; 2017 Mar; 14(3):287-292. PubMed ID: 28010165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA Capture-SELEX on Streptavidin Magnetic Beads.
    Kraus L; Suess B
    Methods Mol Biol; 2023; 2570():63-71. PubMed ID: 36156774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial riboswitch selection: A FACS-based approach.
    Ghazi Z; Fowler CC; Li Y
    Methods Mol Biol; 2014; 1111():57-75. PubMed ID: 24549612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of artificial ON-riboswitches.
    Ogawa A
    Methods Mol Biol; 2014; 1111():165-81. PubMed ID: 24549619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of photoswitchable RNA aptamer-ligand complexes.
    Hayashi G; Nakatani K
    Methods Mol Biol; 2014; 1111():29-40. PubMed ID: 24549610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Engineering and screening of artificial riboswitch as a novel gene control element].
    Yang H; Diao Y; Lin J; Xu R
    Sheng Wu Gong Cheng Xue Bao; 2012 Feb; 28(2):134-43. PubMed ID: 22667116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aptamers targeting RNA molecules.
    Watrin M; Dausse E; Lebars I; Rayner B; Bugaut A; Toulmé JJ
    Methods Mol Biol; 2009; 535():79-105. PubMed ID: 19377979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated physics-based design of synthetic riboswitches from diverse RNA aptamers.
    Espah Borujeni A; Mishler DM; Wang J; Huso W; Salis HM
    Nucleic Acids Res; 2016 Jan; 44(1):1-13. PubMed ID: 26621913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Searching the Sequence Space for Potent Aptamers Using SELEX in Silico.
    Zhou Q; Xia X; Luo Z; Liang H; Shakhnovich E
    J Chem Theory Comput; 2015 Dec; 11(12):5939-46. PubMed ID: 26642994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.