These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26672489)

  • 1. Bandgap engineering of Fe2O3 with Cr - application to photoelectrochemical oxidation.
    Chemelewski WD; Mabayoje O; Tang D; Rettie AJ; Buddie Mullins C
    Phys Chem Chem Phys; 2016 Jan; 18(3):1644-8. PubMed ID: 26672489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical absorption and spectral photoconductivity in α-(Fe₁-xCrx)₂O₃ solid-solution thin films.
    Chamberlin SE; Wang Y; Lopata K; Kaspar TC; Cohn AW; Gamelin DR; Govind N; Sushko PV; Chambers SA
    J Phys Condens Matter; 2013 Oct; 25(39):392002. PubMed ID: 24002907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the optoelectronic properties of hematite with rhodium doping for photoelectrochemical water splitting using density functional theory approach.
    Rauf A; Adil M; Mian SA; Rahman G; Ahmed E; Mohy Ud Din Z; Qun W
    Sci Rep; 2021 Jan; 11(1):41. PubMed ID: 33420147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic layer deposition of metastable β-Fe₂O₃ via isomorphic epitaxy for photoassisted water oxidation.
    Emery JD; Schlepütz CM; Guo P; Riha SC; Chang RP; Martinson AB
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21894-900. PubMed ID: 25490778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.
    Shen S; Guo P; Wheeler DA; Jiang J; Lindley SA; Kronawitter CX; Zhang JZ; Guo L; Mao SS
    Nanoscale; 2013 Oct; 5(20):9867-74. PubMed ID: 23974247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of CuFe
    Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.
    Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S
    Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the domain size and titanium dopant in nanocrystalline hematite thin films for water photolysis.
    Yan D; Tao J; Kisslinger K; Cen J; Wu Q; Orlov A; Liu M
    Nanoscale; 2015 Nov; 7(44):18515-23. PubMed ID: 26499938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotextured Spikes of α-Fe
    Hussain S; Tavakoli MM; Waleed A; Virk US; Yang S; Waseem A; Fan Z; Nadeem MA
    Langmuir; 2018 Mar; 34(12):3555-3564. PubMed ID: 29537275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Cost, Efficient, and Durable H
    Muzzillo CP; Klein WE; Li Z; DeAngelis AD; Horsley K; Zhu K; Gaillard N
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19573-19579. PubMed ID: 29767955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of SnO
    Shaban M; Almohammedi A; Saad R; El Sayed AM
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Theoretical and Experimental Control of Defect Chemistry and Electrical and Photoelectrochemical Properties of Hematite Nanostructures.
    Wang J; Perry NH; Guo L; Vayssieres L; Tuller HL
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2031-2041. PubMed ID: 30576103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe-Cr-Al containing oxide semiconductors as potential solar water-splitting materials.
    Sliozberg K; Stein HS; Khare C; Parkinson BA; Ludwig A; Schuhmann W
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4883-9. PubMed ID: 25650842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.
    Ji M; Cai J; Ma Y; Qi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.
    Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB
    ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical hematite nanoplatelets for photoelectrochemical water splitting.
    Marelli M; Naldoni A; Minguzzi A; Allieta M; Virgili T; Scavia G; Recchia S; Psaro R; Dal Santo V
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11997-2004. PubMed ID: 25007400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Cr-doping on the electronic structure and work function of α-Fe
    Li X; Chen L; Liu H; Mi Z; Shi C; Qiao L
    Phys Chem Chem Phys; 2017 Oct; 19(38):26248-26254. PubMed ID: 28932834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.