These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 26673126)

  • 1. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X.
    Knaier R; Höchsmann C; Infanger D; Hinrichs T; Schmidt-Trucksäss A
    BMC Public Health; 2019 Feb; 19(1):244. PubMed ID: 30819148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M
    Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-living Evaluation of Laboratory-based Activity Classifiers in Preschoolers.
    Ahmadi MN; Brookes D; Chowdhury A; Pavey T; Trost SG
    Med Sci Sports Exerc; 2020 May; 52(5):1227-1234. PubMed ID: 31764460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Activities.
    Kwon S; Zavos P; Nickele K; Sugianto A; Albert MV
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31330889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults.
    Montoye AHK; Clevenger KA; Pfeiffer KA; Nelson MB; Bock JM; Imboden MT; Kaminsky LA
    J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective Assessment of Physical Activity: Classifiers for Public Health.
    Kerr J; Patterson RE; Ellis K; Godbole S; Johnson E; Lanckriet G; Staudenmayer J
    Med Sci Sports Exerc; 2016 May; 48(5):951-7. PubMed ID: 27089222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Hip-Worn Accelerometer Estimates of Sitting Using Machine Learning Methods.
    Kerr J; Carlson J; Godbole S; Cadmus-Bertram L; Bellettiere J; Hartman S
    Med Sci Sports Exerc; 2018 Jul; 50(7):1518-1524. PubMed ID: 29443824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wrist-Worn Activity Trackers in Laboratory and Free-Living Settings for Patients With Chronic Pain: Criterion Validity Study.
    Sjöberg V; Westergren J; Monnier A; Lo Martire R; Hagströmer M; Äng BO; Vixner L
    JMIR Mhealth Uhealth; 2021 Jan; 9(1):e24806. PubMed ID: 33433391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Device-based measurement of physical activity in pre-schoolers: Comparison of machine learning and cut point methods.
    Ahmadi MN; Trost SG
    PLoS One; 2022; 17(4):e0266970. PubMed ID: 35417492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classifiers for Accelerometer-Measured Behaviors in Older Women.
    Rosenberg D; Godbole S; Ellis K; Di C; Lacroix A; Natarajan L; Kerr J
    Med Sci Sports Exerc; 2017 Mar; 49(3):610-616. PubMed ID: 28222058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning for activity recognition: hip versus wrist data.
    Trost SG; Zheng Y; Wong WK
    Physiol Meas; 2014 Nov; 35(11):2183-9. PubMed ID: 25340887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
    Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S
    J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is Wrist Accelerometry Suitable for Threshold Scoring? A Comparison of Hip-Worn and Wrist-Worn ActiGraph Data in Low-Active Older Adults With Obesity.
    Fanning J; Miller ME; Chen SH; Davids C; Kershner K; Rejeski WJ
    J Gerontol A Biol Sci Med Sci; 2022 Dec; 77(12):2429-2434. PubMed ID: 34791237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Accelerometry Methods for Estimating Physical Activity.
    Kerr J; Marinac CR; Ellis K; Godbole S; Hipp A; Glanz K; Mitchell J; Laden F; James P; Berrigan D
    Med Sci Sports Exerc; 2017 Mar; 49(3):617-624. PubMed ID: 27755355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CNN Hip Accelerometer Posture (CHAP) Method for Classifying Sitting Patterns from Hip Accelerometers: A Validation Study.
    Greenwood-Hickman MA; Nakandala S; Jankowska MM; Rosenberg DE; Tuz-Zahra F; Bellettiere J; Carlson J; Hibbing PR; Zou J; Lacroix AZ; Kumar A; Natarajan L
    Med Sci Sports Exerc; 2021 Nov; 53(11):2445-2454. PubMed ID: 34033622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.