These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 26673259)

  • 21. Synthesis of Ptsome: a platinum-based liposome-like nanostructure.
    Aryal S; Hu CM; Zhang L
    Chem Commun (Camb); 2012 Mar; 48(20):2630-2. PubMed ID: 22286522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties.
    Zhou H; Fan T; Han T; Li X; Ding J; Zhang D; Guo Q; Ogawa H
    Nanotechnology; 2009 Feb; 20(8):085603. PubMed ID: 19417451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-Assembly of Tyrosine into Controlled Supramolecular Nanostructures.
    Ménard-Moyon C; Venkatesh V; Krishna KV; Bonachera F; Verma S; Bianco A
    Chemistry; 2015 Aug; 21(33):11681-6. PubMed ID: 26179867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Energy Landscape for the Self-Assembly of a Two-Dimensional DNA Origami Complex.
    Fern J; Lu J; Schulman R
    ACS Nano; 2016 Feb; 10(2):1836-44. PubMed ID: 26820483
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model-driven optimization of multicomponent self-assembly processes.
    Korevaar PA; Grenier C; Markvoort AJ; Schenning AP; de Greef TF; Meijer EW
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17205-10. PubMed ID: 24101463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diamondoid Supramolecular Coordination Frameworks from Discrete Adamantanoid Platinum(II) Cages.
    Cao L; Wang P; Miao X; Dong Y; Wang H; Duan H; Yu Y; Li X; Stang PJ
    J Am Chem Soc; 2018 Jun; 140(22):7005-7011. PubMed ID: 29746782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics.
    Wei X; Nangreave J; Liu Y
    Acc Chem Res; 2014 Jun; 47(6):1861-70. PubMed ID: 24851996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein directed assembly of lipids.
    Nordin D; Yarkoni O; Donlon L; Savinykh N; Frankel D
    Chem Commun (Camb); 2012 Jan; 48(5):672-4. PubMed ID: 22129789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomimetic temporal self-assembly via fuel-driven controlled supramolecular polymerization.
    Mishra A; Korlepara DB; Kumar M; Jain A; Jonnalagadda N; Bejagam KK; Balasubramanian S; George SJ
    Nat Commun; 2018 Mar; 9(1):1295. PubMed ID: 29602946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembled peptide nanostructures for functional materials.
    Ekiz MS; Cinar G; Khalily MA; Guler MO
    Nanotechnology; 2016 Oct; 27(40):402002. PubMed ID: 27578525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The molecular basis of self-assembly of dendron-rod-coils into one-dimensional nanostructures.
    Zubarev ER; Sone ED; Stupp SI
    Chemistry; 2006 Sep; 12(28):7313-27. PubMed ID: 16892475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supramolecular Assembly of Organoplatinum(II) Complexes for Subcellular Distribution and Cell Viability Monitoring with Differentiated Imaging.
    Li B; Wang Y; Chan MH; Pan M; Li Y; Yam VW
    Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202210703. PubMed ID: 36189578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supramolecular chemical biology; bioactive synthetic self-assemblies.
    Petkau-Milroy K; Brunsveld L
    Org Biomol Chem; 2013 Jan; 11(2):219-32. PubMed ID: 23160566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Function follows form: exploring two-dimensional supramolecular assembly at surfaces.
    Tait SL
    ACS Nano; 2008 Apr; 2(4):617-21. PubMed ID: 19206590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smart Nanocages as a Tool for Controlling Supramolecular Aggregation.
    Picchetti P; Moreno-Alcántar G; Talamini L; Mourgout A; Aliprandi A; De Cola L
    J Am Chem Soc; 2021 May; 143(20):7681-7687. PubMed ID: 33891394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aqueous self-assembly of aromatic rod building blocks.
    Ryu JH; Hong DJ; Lee M
    Chem Commun (Camb); 2008 Mar; (9):1043-54. PubMed ID: 18292887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning soft nanostructures in self-assembled supramolecular gels: from morphology control to morphology-dependent functions.
    Zhang L; Wang X; Wang T; Liu M
    Small; 2015 Mar; 11(9-10):1025-38. PubMed ID: 25384759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control over differentiation of a metastable supramolecular assembly in one and two dimensions.
    Fukui T; Kawai S; Fujinuma S; Matsushita Y; Yasuda T; Sakurai T; Seki S; Takeuchi M; Sugiyasu K
    Nat Chem; 2017 May; 9(5):493-499. PubMed ID: 28430199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical supramolecular spinning of nanofibers in a microfluidic channel: tuning nanostructures at a dynamic interface.
    Numata M; Takigami Y; Takayama M; Kozawa T; Hirose N
    Chemistry; 2012 Oct; 18(41):13008-17. PubMed ID: 22945551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.