These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26673269)

  • 1. Water Protects Graphitic Surface from Airborne Hydrocarbon Contamination.
    Li Z; Kozbial A; Nioradze N; Parobek D; Shenoy GJ; Salim M; Amemiya S; Li L; Liu H
    ACS Nano; 2016 Jan; 10(1):349-59. PubMed ID: 26673269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are Graphitic Surfaces Hydrophobic?
    Kozbial A; Zhou F; Li Z; Liu H; Li L
    Acc Chem Res; 2016 Dec; 49(12):2765-2773. PubMed ID: 27935273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of airborne contaminants on the wettability of supported graphene and graphite.
    Li Z; Wang Y; Kozbial A; Shenoy G; Zhou F; McGinley R; Ireland P; Morganstein B; Kunkel A; Surwade SP; Li L; Liu H
    Nat Mater; 2013 Oct; 12(10):925-31. PubMed ID: 23872731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles.
    Kozbial A; Trouba C; Liu H; Li L
    Langmuir; 2017 Jan; 33(4):959-967. PubMed ID: 28071919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic contamination of highly oriented pyrolytic graphite as studied by scanning electrochemical microscopy.
    Nioradze N; Chen R; Kurapati N; Khvataeva-Domanov A; Mabic S; Amemiya S
    Anal Chem; 2015 May; 87(9):4836-43. PubMed ID: 25843146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scanning Electrochemical Microscopy of Carbon Nanomaterials and Graphite.
    Amemiya S; Chen R; Nioradze N; Kim J
    Acc Chem Res; 2016 Sep; 49(9):2007-14. PubMed ID: 27602588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer kinetics on natural crystals of MoS2 and graphite.
    Velický M; Bissett MA; Toth PS; Patten HV; Worrall SD; Rodgers AN; Hill EW; Kinloch IA; Novoselov KS; Georgiou T; Britnell L; Dryfe RA
    Phys Chem Chem Phys; 2015 Jul; 17(27):17844-53. PubMed ID: 26088339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic investigation of the wettability of multilayer graphene using highly ordered pyrolytic graphite as a model material.
    Ashraf A; Wu Y; Wang MC; Aluru NR; Dastgheib SA; Nam S
    Langmuir; 2014 Nov; 30(43):12827-36. PubMed ID: 25310520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O.
    Asai M; Ohba T; Iwanaga T; Kanoh H; Endo M; Campos-Delgado J; Terrones M; Nakai K; Kaneko K
    J Am Chem Soc; 2011 Sep; 133(38):14880-3. PubMed ID: 21870827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Water Layers on Graphene Surfaces.
    Akaishi A; Yonemaru T; Nakamura J
    ACS Omega; 2017 May; 2(5):2184-2190. PubMed ID: 31457569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time dependent wettability of graphite upon ambient exposure: the role of water adsorption.
    Amadei CA; Lai CY; Heskes D; Chiesa M
    J Chem Phys; 2014 Aug; 141(8):084709. PubMed ID: 25173032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomically resolved graphitic surfaces in air by atomic force microscopy.
    Wastl DS; Weymouth AJ; Giessibl FJ
    ACS Nano; 2014 May; 8(5):5233-9. PubMed ID: 24746062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.
    Zhang H; Bhat VV; Gallego NC; Contescu CI
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite.
    Figueiredo-Filho LC; Brownson DA; Gómez-Mingot M; Iniesta J; Fatibello-Filho O; Banks CE
    Analyst; 2013 Nov; 138(21):6354-64. PubMed ID: 24010127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Atmospheric Contaminants on the Work Function of Graphite.
    Bai R; Tolman NL; Peng Z; Liu H
    Langmuir; 2023 Aug; 39(34):12159-12165. PubMed ID: 37581604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution in graphitic surface wettability with first-principles quantum simulations: the counterintuitive role of water.
    Lu JY; Lai CY; Almansoori I; Chiesa M
    Phys Chem Chem Phys; 2018 Sep; 20(35):22636-22644. PubMed ID: 30131998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inherent electrochemistry and activation of chemically modified graphenes for electrochemical applications.
    Moo JG; Ambrosi A; Bonanni A; Pumera M
    Chem Asian J; 2012 Apr; 7(4):759-70. PubMed ID: 22298372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the surface energy of graphene by contact angle measurements.
    Kozbial A; Li Z; Conaway C; McGinley R; Dhingra S; Vahdat V; Zhou F; D'Urso B; Liu H; Li L
    Langmuir; 2014 Jul; 30(28):8598-606. PubMed ID: 24983409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphite and Graphene Fairy Circles: A Bottom-Up Approach for the Formation of Nanocorrals.
    Phan TH; Van Gorp H; Li Z; Trung Huynh TM; Fujita Y; Verstraete L; Eyley S; Thielemans W; Uji-I H; Hirsch BE; Mertens SFL; Greenwood J; Ivasenko O; De Feyter S
    ACS Nano; 2019 May; 13(5):5559-5571. PubMed ID: 31013051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 7,7,8,8-Tetracyanoquinodimethane-assisted one-step electrochemical exfoliation of graphite and its performance as an electrode material.
    Khanra P; Lee CN; Kuila T; Kim NH; Park MJ; Lee JH
    Nanoscale; 2014 May; 6(9):4864-73. PubMed ID: 24668420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.