These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 26673326)
1. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Toledo CM; Ding Y; Hoellerbauer P; Davis RJ; Basom R; Girard EJ; Lee E; Corrin P; Hart T; Bolouri H; Davison J; Zhang Q; Hardcastle J; Aronow BJ; Plaisier CL; Baliga NS; Moffat J; Lin Q; Li XN; Nam DH; Lee J; Pollard SM; Zhu J; Delrow JJ; Clurman BE; Olson JM; Paddison PJ Cell Rep; 2015 Dec; 13(11):2425-2439. PubMed ID: 26673326 [TBL] [Abstract][Full Text] [Related]
2. Upregulation of Myt1 Promotes Acquired Resistance of Cancer Cells to Wee1 Inhibition. Lewis CW; Bukhari AB; Xiao EJ; Choi WS; Smith JD; Homola E; Mackey JR; Campbell SD; Gamper AM; Chan GK Cancer Res; 2019 Dec; 79(23):5971-5985. PubMed ID: 31594837 [TBL] [Abstract][Full Text] [Related]
3. Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Potapova TA; Sivakumar S; Flynn JN; Li R; Gorbsky GJ Mol Biol Cell; 2011 Apr; 22(8):1191-206. PubMed ID: 21325631 [TBL] [Abstract][Full Text] [Related]
4. Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma. Lescarbeau RS; Lei L; Bakken KK; Sims PA; Sarkaria JN; Canoll P; White FM Mol Cancer Ther; 2016 Jun; 15(6):1332-43. PubMed ID: 27196784 [TBL] [Abstract][Full Text] [Related]
5. Regulation of G2/M Transition by Inhibition of WEE1 and PKMYT1 Kinases. Schmidt M; Rohe A; Platzer C; Najjar A; Erdmann F; Sippl W Molecules; 2017 Nov; 22(12):. PubMed ID: 29168755 [TBL] [Abstract][Full Text] [Related]
6. Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy. Guertin AD; Li J; Liu Y; Hurd MS; Schuller AG; Long B; Hirsch HA; Feldman I; Benita Y; Toniatti C; Zawel L; Fawell SE; Gilliland DG; Shumway SD Mol Cancer Ther; 2013 Aug; 12(8):1442-52. PubMed ID: 23699655 [TBL] [Abstract][Full Text] [Related]
7. Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors. Zhu JY; Cuellar RA; Berndt N; Lee HE; Olesen SH; Martin MP; Jensen JT; Georg GI; Schönbrunn E J Med Chem; 2017 Sep; 60(18):7863-7875. PubMed ID: 28792760 [TBL] [Abstract][Full Text] [Related]
8. Systematic screening for potential therapeutic targets in osteosarcoma through a kinome-wide CRISPR-Cas9 library. Wu Y; Zhou L; Wang Z; Wang X; Zhang R; Zheng L; Kang T Cancer Biol Med; 2020 Aug; 17(3):782-794. PubMed ID: 32944406 [No Abstract] [Full Text] [Related]
9. Genome-wide CRISPR screens identify PKMYT1 as a therapeutic target in pancreatic ductal adenocarcinoma. Wang S; Xiong Y; Luo Y; Shen Y; Zhang F; Lan H; Pang Y; Wang X; Li X; Zheng X; Lu X; Liu X; Cheng Y; Wu T; Dong Y; Lu Y; Cui J; Jia X; Yang S; Wang L; Wang Y EMBO Mol Med; 2024 May; 16(5):1115-1142. PubMed ID: 38570712 [TBL] [Abstract][Full Text] [Related]
10. Mdm2 inhibition confers protection of p53-proficient cells from the cytotoxic effects of Wee1 inhibitors. Li Y; Saini P; Sriraman A; Dobbelstein M Oncotarget; 2015 Oct; 6(32):32339-52. PubMed ID: 26431163 [TBL] [Abstract][Full Text] [Related]
11. MK1775, a selective Wee1 inhibitor, shows single-agent antitumor activity against sarcoma cells. Kreahling JM; Gemmer JY; Reed D; Letson D; Bui M; Altiok S Mol Cancer Ther; 2012 Jan; 11(1):174-82. PubMed ID: 22084170 [TBL] [Abstract][Full Text] [Related]
12. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. Ghelli Luserna di Rorà A; Cerchione C; Martinelli G; Simonetti G J Hematol Oncol; 2020 Sep; 13(1):126. PubMed ID: 32958072 [TBL] [Abstract][Full Text] [Related]
13. Keratinocyte G2/M growth arrest by 1,25-dihydroxyvitamin D3 is caused by Cdc2 phosphorylation through Wee1 and Myt1 regulation. Dai X; Yamasaki K; Yang L; Sayama K; Shirakata Y; Tokumara S; Yahata Y; Tohyama M; Hashimoto K J Invest Dermatol; 2004 Jun; 122(6):1356-64. PubMed ID: 15175024 [TBL] [Abstract][Full Text] [Related]
14. Two Distinct Cdc2 Pools Regulate Cell Cycle Progression and the DNA Damage Response in the Fission Yeast S.pombe. Caspari T; Hilditch V PLoS One; 2015; 10(7):e0130748. PubMed ID: 26131711 [TBL] [Abstract][Full Text] [Related]