BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 26673568)

  • 1. Daily transcriptome changes reveal the role of nitrogen in controlling microcystin synthesis and nutrient transport in the toxic cyanobacterium, Microcystis aeruginosa.
    Harke MJ; Gobler CJ
    BMC Genomics; 2015 Dec; 16():1068. PubMed ID: 26673568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter.
    Harke MJ; Gobler CJ
    PLoS One; 2013; 8(7):e69834. PubMed ID: 23894552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of changes in Microcystis aeruginosa growth and microcystin production by urea via transcriptomic surveys.
    Zhou Y; Zhang X; Li X; Jia P; Dai R
    Sci Total Environ; 2019 Mar; 655():181-187. PubMed ID: 30469064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806.
    Sevilla E; Martin-Luna B; Vela L; Bes MT; Peleato ML; Fillat MF
    Ecotoxicology; 2010 Oct; 19(7):1167-73. PubMed ID: 20532619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated pCO2 causes a shift towards more toxic microcystin variants in nitrogen-limited Microcystis aeruginosa.
    Liu J; Van Oosterhout E; Faassen EJ; Lürling M; Helmsing NR; Van de Waal DB
    FEMS Microbiol Ecol; 2016 Feb; 92(2):. PubMed ID: 26676057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the cyanobacterial toxin metabolism of Microcystis aeruginosa in nitrogen-starved conditions by a stable isotope labelling method.
    Qian ZY; Chen X; Zhu HT; Shi JZ; Gong TT; Xian QM
    J Hazard Mater; 2019 Jul; 373():558-564. PubMed ID: 30952000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific global responses to N and Fe nutrition in toxic and non-toxic Microcystis aeruginosa.
    Alexova R; Dang TC; Fujii M; Raftery MJ; Waite TD; Ferrari BC; Neilan BA
    Environ Microbiol; 2016 Feb; 18(2):401-13. PubMed ID: 26119859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic analysis dissects the regulatory strategy of toxic cyanobacterium Microcystis aeruginosa under differential nitrogen forms.
    Yang X; Bi Y; Ma X; Dong W; Wang X; Wang S
    J Hazard Mater; 2022 Apr; 428():128276. PubMed ID: 35051775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional and Physiological Responses to Nutrient Loading on Toxin Formation and Photosynthesis in Microcystis Aeruginosa FACHB-905.
    Peng G; Lin S; Fan Z; Wang X
    Toxins (Basel); 2017 May; 9(5):. PubMed ID: 28513574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron uptake and toxin synthesis in the bloom-forming Microcystis aeruginosa under iron limitation.
    Alexova R; Fujii M; Birch D; Cheng J; Waite TD; Ferrari BC; Neilan BA
    Environ Microbiol; 2011 Apr; 13(4):1064-77. PubMed ID: 21251177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. γ-Lindane Increases Microcystin Synthesis in Microcystis aeruginosa PCC7806.
    Ceballos-Laita L; Calvo-Begueria L; Lahoz J; Bes MT; Fillat MF; Peleato ML
    Mar Drugs; 2015 Sep; 13(9):5666-80. PubMed ID: 26404326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806.
    Sevilla E; Martin-Luna B; Vela L; Bes MT; Fillat MF; Peleato ML
    Environ Microbiol; 2008 Oct; 10(10):2476-83. PubMed ID: 18647335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic Responses in the Bloom-Forming Cyanobacterium Microcystis Induced during Exposure to Zooplankton.
    Harke MJ; Jankowiak JG; Morrell BK; Gobler CJ
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcystin Biosynthesis and
    Srivastava A; Ko SR; Ahn CY; Oh HM; Ravi AK; Asthana RK
    Biomed Res Int; 2016; 2016():5985987. PubMed ID: 27803926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target gene approaches: Gene expression in Daphnia magna exposed to predator-borne kairomones or to microcystin-producing and microcystin-free Microcystis aeruginosa.
    Schwarzenberger A; Courts C; von Elert E
    BMC Genomics; 2009 Nov; 10():527. PubMed ID: 19917101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcystin production and regulation under nutrient stress conditions in toxic microcystis strains.
    Pimentel JS; Giani A
    Appl Environ Microbiol; 2014 Sep; 80(18):5836-43. PubMed ID: 25038094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation.
    Zhou Y; Li X; Xia Q; Dai R
    Sci Total Environ; 2020 Jan; 700():134501. PubMed ID: 31689655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806.
    Makower AK; Schuurmans JM; Groth D; Zilliges Y; Matthijs HC; Dittmann E
    Appl Environ Microbiol; 2015 Jan; 81(2):544-54. PubMed ID: 25381232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium
    Zhang M; Lu T; Paerl HW; Chen Y; Zhang Z; Zhou Z; Qian H
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31420344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis.
    Van de Waal DB; Verspagen JM; Lürling M; Van Donk E; Visser PM; Huisman J
    Ecol Lett; 2009 Dec; 12(12):1326-35. PubMed ID: 19754885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.