These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 26673703)

  • 21. Synthetic Life with Alternative Nucleic Acids as Genetic Materials.
    Nie P; Bai Y; Mei H
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineered Polymerases with Altered Substrate Specificity: Expression and Purification.
    Nikoomanzar A; Dunn MR; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2017 Jun; 69():4.75.1-4.75.20. PubMed ID: 28628207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of Functionally Enhanced α-l-Threofuranosyl Nucleic Acid Aptamers.
    McCloskey CM; Li Q; Yik EJ; Chim N; Ngor AK; Medina E; Grubisic I; Co Ting Keh L; Poplin R; Chaput JC
    ACS Synth Biol; 2021 Nov; 10(11):3190-3199. PubMed ID: 34739228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Xenobiology: State-of-the-Art, Ethics, and Philosophy of New-to-Nature Organisms.
    Schmidt M; Pei L; Budisa N
    Adv Biochem Eng Biotechnol; 2018; 162():301-315. PubMed ID: 28567486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering TNA polymerases through iterative cycles of directed evolution.
    Yik EJ; Maola VA; Chaput JC
    Methods Enzymol; 2023; 691():29-59. PubMed ID: 37914450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward safe genetically modified organisms through the chemical diversification of nucleic acids.
    Herdewijn P; Marlière P
    Chem Biodivers; 2009 Jun; 6(6):791-808. PubMed ID: 19554563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional Comparison of Laboratory-Evolved XNA Polymerases for Synthetic Biology.
    Medina E; Yik EJ; Herdewijn P; Chaput JC
    ACS Synth Biol; 2021 Jun; 10(6):1429-1437. PubMed ID: 34029459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating the Catalytic Potential of a General RNA-Cleaving FANA Enzyme.
    Wang Y; Vorperian A; Shehabat M; Chaput JC
    Chembiochem; 2020 Apr; 21(7):1001-1006. PubMed ID: 31680396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compartmentalized Self-Tagging for In Vitro-Directed Evolution of XNA Polymerases.
    Pinheiro VB; Arangundy-Franklin S; Holliger P
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.9.1-18. PubMed ID: 24961724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Xenobiotic Nucleic Acid (XNA) Synthesis by Phi29 DNA Polymerase.
    Torres LL; Pinheiro VB
    Curr Protoc Chem Biol; 2018 Jun; 10(2):e41. PubMed ID: 29927114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.
    Dunn MR; Chaput JC
    Chembiochem; 2016 Oct; 17(19):1804-1808. PubMed ID: 27383648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xeno nucleic acids (XNAs) having non-ribose scaffolds with unique supramolecular properties.
    Asanuma H; Kamiya Y; Kashida H; Murayama K
    Chem Commun (Camb); 2022 Mar; 58(25):3993-4004. PubMed ID: 35107445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology.
    Wang G; Du Y; Ma X; Ye F; Qin Y; Wang Y; Xiang Y; Tao R; Chen T
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis for TNA synthesis by an engineered TNA polymerase.
    Chim N; Shi C; Sau SP; Nikoomanzar A; Chaput JC
    Nat Commun; 2017 Nov; 8(1):1810. PubMed ID: 29180809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solution structure and conformational dynamics of deoxyxylonucleic acids (dXNA): an orthogonal nucleic acid candidate.
    Maiti M; Siegmund V; Abramov M; Lescrinier E; Rosemeyer H; Froeyen M; Ramaswamy A; Ceulemans A; Marx A; Herdewijn P
    Chemistry; 2012 Jan; 18(3):869-79. PubMed ID: 22180030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental evidence that GNA and TNA were not sequential polymers in the prebiotic evolution of RNA.
    Yang YW; Zhang S; McCullum EO; Chaput JC
    J Mol Evol; 2007 Sep; 65(3):289-95. PubMed ID: 17828568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An efficient and faithful in vitro replication system for threose nucleic acid.
    Yu H; Zhang S; Dunn MR; Chaput JC
    J Am Chem Soc; 2013 Mar; 135(9):3583-91. PubMed ID: 23432469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and Hybridization Properties of Acyclic Xeno Nucleic Acid Oligomers.
    Murayama K; Asanuma H
    Chembiochem; 2021 Aug; 22(15):2507-2515. PubMed ID: 33998765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyamines promote xenobiotic nucleic acid synthesis by modified thermophilic polymerase mutants.
    Hoshino H; Kasahara Y; Obika S
    RSC Chem Biol; 2024 May; 5(5):467-472. PubMed ID: 38725908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A general strategy for expanding polymerase function by droplet microfluidics.
    Larsen AC; Dunn MR; Hatch A; Sau SP; Youngbull C; Chaput JC
    Nat Commun; 2016 Apr; 7():11235. PubMed ID: 27044725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.