These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26673718)

  • 1. A comprehensive comparison of general RNA-RNA interaction prediction methods.
    Lai D; Meyer IM
    Nucleic Acids Res; 2016 Apr; 44(7):e61. PubMed ID: 26673718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PETcofold: predicting conserved interactions and structures of two multiple alignments of RNA sequences.
    Seemann SE; Richter AS; Gesell T; Backofen R; Gorodkin J
    Bioinformatics; 2011 Jan; 27(2):211-9. PubMed ID: 21088024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains.
    Wright PR; Georg J; Mann M; Sorescu DA; Richter AS; Lott S; Kleinkauf R; Hess WR; Backofen R
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W119-23. PubMed ID: 24838564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RIsearch: fast RNA-RNA interaction search using a simplified nearest-neighbor energy model.
    Wenzel A; Akbasli E; Gorodkin J
    Bioinformatics; 2012 Nov; 28(21):2738-46. PubMed ID: 22923300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNApredator: fast accessibility-based prediction of sRNA targets.
    Eggenhofer F; Tafer H; Stadler PF; Hofacker IL
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W149-54. PubMed ID: 21672960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TargetRNA2: identifying targets of small regulatory RNAs in bacteria.
    Kery MB; Feldman M; Livny J; Tjaden B
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W124-9. PubMed ID: 24753424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MASTR: multiple alignment and structure prediction of non-coding RNAs using simulated annealing.
    Lindgreen S; Gardner PP; Krogh A
    Bioinformatics; 2007 Dec; 23(24):3304-11. PubMed ID: 18006551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TargetRNA: a tool for predicting targets of small RNA action in bacteria.
    Tjaden B
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W109-13. PubMed ID: 18477632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accessibility and conservation: general features of bacterial small RNA-mRNA interactions?
    Richter AS; Backofen R
    RNA Biol; 2012 Jul; 9(7):954-65. PubMed ID: 22767260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide searching with base-pairing kernel functions for noncoding RNAs: computational and expression analysis of snoRNA families in Caenorhabditis elegans.
    Morita K; Saito Y; Sato K; Oka K; Hotta K; Sakakibara Y
    Nucleic Acids Res; 2009 Feb; 37(3):999-1009. PubMed ID: 19129214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TurboFold: iterative probabilistic estimation of secondary structures for multiple RNA sequences.
    Harmanci AO; Sharma G; Mathews DH
    BMC Bioinformatics; 2011 Apr; 12():108. PubMed ID: 21507242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of various seed, accessibility and interaction constraints on sRNA target prediction- a systematic assessment.
    Raden M; Müller T; Mautner S; Gelhausen R; Backofen R
    BMC Bioinformatics; 2020 Jan; 21(1):15. PubMed ID: 31931703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPORTS1.0: A Tool for Annotating and Profiling Non-coding RNAs Optimized for rRNA- and tRNA-derived Small RNAs.
    Shi J; Ko EA; Sanders KM; Chen Q; Zhou T
    Genomics Proteomics Bioinformatics; 2018 Apr; 16(2):144-151. PubMed ID: 29730207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of bacterial sRNA regulatory targets using ribosome profiling.
    Wang J; Rennie W; Liu C; Carmack CS; Prévost K; Caron MP; Massé E; Ding Y; Wade JT
    Nucleic Acids Res; 2015 Dec; 43(21):10308-20. PubMed ID: 26546513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational analysis of bacterial RNA-Seq data.
    McClure R; Balasubramanian D; Sun Y; Bobrovskyy M; Sumby P; Genco CA; Vanderpool CK; Tjaden B
    Nucleic Acids Res; 2013 Aug; 41(14):e140. PubMed ID: 23716638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.
    van der Meulen SB; de Jong A; Kok J
    RNA Biol; 2016; 13(3):353-66. PubMed ID: 26950529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast.
    Kudla G; Granneman S; Hahn D; Beggs JD; Tollervey D
    Proc Natl Acad Sci U S A; 2011 Jun; 108(24):10010-5. PubMed ID: 21610164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A search for H/ACA snoRNAs in yeast using MFE secondary structure prediction.
    Edvardsson S; Gardner PP; Poole AM; Hendy MD; Penny D; Moulton V
    Bioinformatics; 2003 May; 19(7):865-73. PubMed ID: 12724297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast accessibility-based prediction of RNA-RNA interactions.
    Tafer H; Amman F; Eggenhofer F; Stadler PF; Hofacker IL
    Bioinformatics; 2011 Jul; 27(14):1934-40. PubMed ID: 21593134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive comparison of comparative RNA structure prediction approaches.
    Gardner PP; Giegerich R
    BMC Bioinformatics; 2004 Sep; 5():140. PubMed ID: 15458580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.