These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26673883)

  • 1. Development of a smart guide wire using an electrostrictive polymer: option for steerable orientation and force feedback.
    Ganet F; Le MQ; Capsal JF; Lermusiaux P; Petit L; Millon A; Cottinet PJ
    Sci Rep; 2015 Dec; 5():18593. PubMed ID: 26673883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steerable-wire technique using high-flow steerable microcatheter and 0.025-inch guidewire.
    Maruyama M; Araki H; Yoshida R; Ando S; Nakamura M; Yoshizako T; Kaji Y
    Radiol Case Rep; 2023 Dec; 18(12):4231-4234. PubMed ID: 37766837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Figures of Merit for a High-Performing Actuator in Electrostrictive Materials.
    Della Schiava N; Thetpraphi K; Le MQ; Lermusiaux P; Millon A; Capsal JF; Cottinet PJ
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steerable catheters for minimally invasive surgery: a review and future directions.
    Hu X; Chen A; Luo Y; Zhang C; Zhang E
    Comput Assist Surg (Abingdon); 2018 Dec; 23(1):21-41. PubMed ID: 30497292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrothermally Driven Hydrogel-on-Flex-Circuit Actuator for Smart Steerable Catheters.
    Selvaraj M; Takahata K
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31936214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Soft Pneumatic Two-Degree-of-Freedom Actuator for Endoscopy.
    Decroly G; Lambert P; Delchambre A
    Front Robot AI; 2021; 8():768236. PubMed ID: 34869616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design Optimization of Printed Multi-Layered Electroactive Actuators Used for Steerable Guidewire in Micro-Invasive Surgery.
    Toinet S; Benwadih M; Szambolics H; Revenant C; Alincant D; Bordet M; Capsal JF; Della-Schiava N; Le MQ; Cottinet PJ
    Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, characterization and optimization of a soft fluidic actuator for minimally invasive surgery.
    Decroly G; Mertens B; Lambert P; Delchambre A
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):333-340. PubMed ID: 31646436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attaining high bending stiffness by full actuation in steerable minimally invasive surgical instruments.
    JelĂ­nek F; Gerboni G; Henselmans PW; Pessers R; Breedveld P
    Minim Invasive Ther Allied Technol; 2015 Apr; 24(2):77-85. PubMed ID: 25263681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Electromechanical Deformation Based on Structural Beta-Phase Content and Electrostrictive Properties of Electrospun Poly(vinylidene fluoride- hexafluoropropylene) Nanofibers.
    Tohluebaji N; Putson C; Muensit N
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31694289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omni Directional Multimaterial Soft Cylindrical Actuator and Its Application as a Steerable Catheter.
    Gul JZ; Yang YJ; Su KY; Choi KH
    Soft Robot; 2017 Sep; 4(3):224-240. PubMed ID: 29182084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a Fish-like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials.
    Xiao P; Yi N; Zhang T; Huang Y; Chang H; Yang Y; Zhou Y; Chen Y
    Adv Sci (Weinh); 2016 Jun; 3(6):1500438. PubMed ID: 27818900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.
    Liang J; Huang L; Li N; Huang Y; Wu Y; Fang S; Oh J; Kozlov M; Ma Y; Li F; Baughman R; Chen Y
    ACS Nano; 2012 May; 6(5):4508-19. PubMed ID: 22512356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of steerable sheaths on unblinded contact force during catheter ablation for atrial fibrillation.
    Deyell MW; Wen G; Laksman Z; Bennett MT; Chakrabarti S; Yeung-Lai-Wah JA; Krahn AD; Andrade JG
    J Interv Card Electrophysiol; 2020 Apr; 57(3):417-424. PubMed ID: 30701358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing Tissue Damage Around a Tape Spring Steerable Needle With Sharp Turn Radii.
    Abdoun OT; Yim M
    IEEE Open J Eng Med Biol; 2024; 5():45-49. PubMed ID: 38445241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristic of a force sensing guide wire for minimally invasive cardiac surgery.
    Stefanova N; Hessinger M; Opitz T; Werthschutzky R
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5220-5223. PubMed ID: 28269441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steerable Catheters in Cardiology: Classifying Steerability and Assessing Future Challenges.
    Ali A; Plettenburg DH; Breedveld P
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):679-93. PubMed ID: 26863645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetically steerable catheters: State of the art review.
    Limpabandhu C; Hu Y; Ren H; Song W; Ho Tse ZT
    Proc Inst Mech Eng H; 2023 Mar; 237(3):297-308. PubMed ID: 36704957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 35 Hz shape memory alloy actuator with bending-twisting mode.
    Song SH; Lee JY; Rodrigue H; Choi IS; Kang YJ; Ahn SH
    Sci Rep; 2016 Feb; 6():21118. PubMed ID: 26892438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Shape Memory Alloy Coil Spring Actuator for Improving Performance in Cyclic Actuation.
    Koh JS
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30463218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.