These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26673949)

  • 1. Using Akaike's information theoretic criterion in mixed-effects modeling of pharmacokinetic data: a simulation study.
    Olofsen E; Dahan A
    F1000Res; 2013; 2():71. PubMed ID: 26673949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An empirical comparison of information-theoretic selection criteria for multivariate behavior genetic models.
    Markon KE; Krueger RF
    Behav Genet; 2004 Nov; 34(6):593-610. PubMed ID: 15520516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the performance of AIC in selecting phylogenetic models.
    Jhwueng DC; Huzurbazar S; O'Meara BC; Liu L
    Stat Appl Genet Mol Biol; 2014 Aug; 13(4):459-75. PubMed ID: 24867284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Akaike's Information Criterion and Recent Developments in Information Complexity.
    Bozdogan H
    J Math Psychol; 2000 Mar; 44(1):62-91. PubMed ID: 10733858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Akaike's information criterion for a measure of linkage disequilibrium.
    Shimo-onoda K; Tanaka T; Furushima K; Nakajima T; Toh S; Harata S; Yone K; Komiya S; Adachi H; Nakamura E; Fujimiya H; Inoue I
    J Hum Genet; 2002; 47(12):649-55. PubMed ID: 12522686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the Akaike Information Criterion, the Schwarz criterion and the F test as guides to model selection.
    Ludden TM; Beal SL; Sheiner LB
    J Pharmacokinet Biopharm; 1994 Oct; 22(5):431-45. PubMed ID: 7791040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AIC and the challenge of complexity: A case study from ecology.
    Moll RJ; Steel D; Montgomery RA
    Stud Hist Philos Biol Biomed Sci; 2016 Dec; 60():35-43. PubMed ID: 27697630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative performance of Bayesian and AIC-based measures of phylogenetic model uncertainty.
    Alfaro ME; Huelsenbeck JP
    Syst Biol; 2006 Feb; 55(1):89-96. PubMed ID: 16507526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian information criterion for longitudinal and clustered data.
    Jones RH
    Stat Med; 2011 Nov; 30(25):3050-6. PubMed ID: 21805487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model selection with multiple regression on distance matrices leads to incorrect inferences.
    Franckowiak RP; Panasci M; Jarvis KJ; Acuña-Rodriguez IS; Landguth EL; Fortin MJ; Wagner HH
    PLoS One; 2017; 12(4):e0175194. PubMed ID: 28406923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model selection in occupancy models: Inference versus prediction.
    Stewart PS; Stephens PA; Hill RA; Whittingham MJ; Dawson W
    Ecology; 2023 Mar; 104(3):e3942. PubMed ID: 36477749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).
    Vrieze SI
    Psychol Methods; 2012 Jun; 17(2):228-43. PubMed ID: 22309957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Information theoretic ranking of four models of diffusion attenuation in fresh and fixed prostate tissue ex vivo.
    Bourne RM; Panagiotaki E; Bongers A; Sved P; Watson G; Alexander DC
    Magn Reson Med; 2014 Nov; 72(5):1418-26. PubMed ID: 24302537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of different criteria for selecting pharmacokinetic multiexponential equations.
    Imbimbo BP; Martinelli P; Rocchetti M; Ferrari G; Bassotti G; Imbimbo E
    Biopharm Drug Dispos; 1991 Mar; 12(2):139-47. PubMed ID: 2031995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Akaike's information criterion in generalized estimating equations.
    Pan W
    Biometrics; 2001 Mar; 57(1):120-5. PubMed ID: 11252586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel hybrid dimension reduction technique for undersized high dimensional gene expression data sets using information complexity criterion for cancer classification.
    Pamukçu E; Bozdogan H; Çalık S
    Comput Math Methods Med; 2015; 2015():370640. PubMed ID: 25838836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous optimization of limited sampling points for pharmacokinetic analysis of amrubicin and amrubicinol in cancer patients.
    Makino Y; Watanabe M; Makihara RA; Nokihara H; Yamamoto N; Ohe Y; Sugiyama E; Sato H; Hayashi Y
    Asia Pac J Clin Oncol; 2016 Sep; 12(3):259-64. PubMed ID: 26948073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model selection for time-activity curves: the corrected Akaike information criterion and the F-test.
    Kletting P; Glatting G
    Z Med Phys; 2009; 19(3):200-6. PubMed ID: 19761098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariate modeling of complications with data driven variable selection: guarding against overfitting and effects of data set size.
    van der Schaaf A; Xu CJ; van Luijk P; Van't Veld AA; Langendijk JA; Schilstra C
    Radiother Oncol; 2012 Oct; 105(1):115-21. PubMed ID: 22264894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability.
    Brix G; Zwick S; Kiessling F; Griebel J
    Med Phys; 2009 Jul; 36(7):2923-33. PubMed ID: 19673191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.