These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26674126)

  • 1. Emulating avian orographic soaring with a small autonomous glider.
    Fisher A; Marino M; Clothier R; Watkins S; Peters L; Palmer JL
    Bioinspir Biomim; 2015 Dec; 11(1):016002. PubMed ID: 26674126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods.
    Caetano JV; Percin M; van Oudheusden BW; Remes B; de Wagter C; de Croon GC; de Visser CC
    Bioinspir Biomim; 2015 Aug; 10(5):056004. PubMed ID: 26292289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees.
    Moore J; Cory R; Tedrake R
    Bioinspir Biomim; 2014 Jun; 9(2):025013. PubMed ID: 24852406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for continuous study of soaring and windhovering birds.
    Penn M; Yi G; Watkins S; Martinez Groves-Raines M; Windsor SP; Mohamed A
    Sci Rep; 2022 Apr; 12(1):7038. PubMed ID: 35487925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.
    Nakata T; Liu H; Tanaka Y; Nishihashi N; Wang X; Sato A
    Bioinspir Biomim; 2011 Dec; 6(4):045002. PubMed ID: 22126793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.
    Liu DN; Hou ZX; Guo Z; Yang XX; Gao XZ
    Bioinspir Biomim; 2017 Jan; 12(1):016014. PubMed ID: 27991431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conceptual design of flapping-wing micro air vehicles.
    Whitney JP; Wood RJ
    Bioinspir Biomim; 2012 Sep; 7(3):036001. PubMed ID: 22498507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance analysis of jump-gliding locomotion for miniature robotics.
    Vidyasagar A; Zufferey JC; Floreano D; Kovač M
    Bioinspir Biomim; 2015 Mar; 10(2):025006. PubMed ID: 25811417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Avian-inspired energy-harvesting from atmospheric phenomena for small UAVs.
    Gavrilovic N; Mohamed A; Marino M; Watkins S; Moschetta JM; Benard E
    Bioinspir Biomim; 2018 Nov; 14(1):016006. PubMed ID: 30457112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First controlled vertical flight of a biologically inspired microrobot.
    Pérez-Arancibia NO; Ma KY; Galloway KC; Greenberg JD; Wood RJ
    Bioinspir Biomim; 2011 Sep; 6(3):036009. PubMed ID: 21878707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight.
    Percin M; van Oudheusden BW; de Croon GC; Remes B
    Bioinspir Biomim; 2016 May; 11(3):036014. PubMed ID: 27194392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive control of a millimeter-scale flapping-wing robot.
    Chirarattananon P; Ma KY; Wood RJ
    Bioinspir Biomim; 2014 Jun; 9(2):025004. PubMed ID: 24855052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward autonomous avian-inspired grasping for micro aerial vehicles.
    Thomas J; Loianno G; Polin J; Sreenath K; Kumar V
    Bioinspir Biomim; 2014 Jun; 9(2):025010. PubMed ID: 24852023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal soaring flight of birds and unmanned aerial vehicles.
    Akos Z; Nagy M; Leven S; Vicsek T
    Bioinspir Biomim; 2010 Dec; 5(4):045003. PubMed ID: 21098957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.
    Shen H; Xu Y; Dickinson BT
    Bioinspir Biomim; 2014 Nov; 9(4):046015. PubMed ID: 25405953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a bio-inspired controller for dynamic soaring in a simulated unmanned aerial vehicle.
    Barate R; Doncieux S; Meyer JA
    Bioinspir Biomim; 2006 Sep; 1(3):76-88. PubMed ID: 17671309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reynolds number dependency of an insect-based flapping wing.
    Han JS; Chang JW; Kim ST
    Bioinspir Biomim; 2014; 9(4):046012. PubMed ID: 25381677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attitude control system for a lightweight flapping wing MAV.
    Tijmons S; Karásek M; de Croon G
    Bioinspir Biomim; 2018 Jul; 13(5):056004. PubMed ID: 29537389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.