BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 26674208)

  • 1. Quantitative Activity Measurements of Brown Adipose Tissue at 7 T Magnetic Resonance Imaging After Application of Triglyceride-Rich Lipoprotein 59Fe-Superparamagnetic Iron Oxide Nanoparticle: Intravenous Versus Intraperitoneal Approach.
    Jung CS; Heine M; Freund B; Reimer R; Koziolek EJ; Kaul MG; Kording F; Schumacher U; Weller H; Nielsen P; Adam G; Heeren J; Ittrich H
    Invest Radiol; 2016 Mar; 51(3):194-202. PubMed ID: 26674208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraperitoneal injection improves the uptake of nanoparticle-labeled high-density lipoprotein to atherosclerotic plaques compared with intravenous injection: a multimodal imaging study in ApoE knockout mice.
    Jung C; Kaul MG; Bruns OT; Dučić T; Freund B; Heine M; Reimer R; Meents A; Salmen SC; Weller H; Nielsen P; Adam G; Heeren J; Ittrich H
    Circ Cardiovasc Imaging; 2014 Mar; 7(2):303-11. PubMed ID: 24357264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current limitations of molecular magnetic resonance imaging for tumors as evaluated with high-relaxivity CD105-specific iron oxide nanoparticles.
    Dassler K; Roohi F; Lohrke J; Ide A; Remmele S; Hütter J; Pietsch H; Pison U; Schütz G
    Invest Radiol; 2012 Jul; 47(7):383-91. PubMed ID: 22659596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of liver-specific r2 * of a highly monodisperse USPIO by (59) Fe iron core-labeling in mice at 3 T MRI.
    Raabe N; Forberich E; Freund B; Bruns OT; Heine M; Kaul MG; Tromsdorf U; Herich L; Nielsen P; Reimer R; Hohenberg H; Weller H; Schumacher U; Adam G; Ittrich H
    Contrast Media Mol Imaging; 2015; 10(2):153-62. PubMed ID: 25078884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and widely applicable method to 59Fe-radiolabel monodisperse superparamagnetic iron oxide nanoparticles for in vivo quantification studies.
    Freund B; Tromsdorf UI; Bruns OT; Heine M; Giemsa A; Bartelt A; Salmen SC; Raabe N; Heeren J; Ittrich H; Reimer R; Hohenberg H; Schumacher U; Weller H; Nielsen P
    ACS Nano; 2012 Aug; 6(8):7318-25. PubMed ID: 22793497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRI characterization of brown adipose tissue under thermal challenges in normal weight, overweight, and obese young men.
    Deng J; Neff LM; Rubert NC; Zhang B; Shore RM; Samet JD; Nelson PC; Landsberg L
    J Magn Reson Imaging; 2018 Apr; 47(4):936-947. PubMed ID: 28801960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex vivo magnetic resonance imaging of transplanted hepatocytes in a rat model of acute liver failure.
    Puppi J; Modo M; Dhawan A; Lehec SC; Mitry RR; Hughes RD
    Cell Transplant; 2014 Mar; 23(3):329-43. PubMed ID: 23394812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seven-tesla magnetic resonance imaging accurately quantifies intratumoral uptake of therapeutic nanoparticles in the McA rat model of hepatocellular carcinoma: preclinical study in a rodent model.
    Tyler PD; McDevitt JL; Sheu AY; Nicolai J; Procissi D; Ragin AB; Lewandowski RJ; Salem R; Larson AC; Omary RA
    Invest Radiol; 2014 Feb; 49(2):87-92. PubMed ID: 24089022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance.
    Danhier P; Magat J; Levêque P; De Preter G; Porporato PE; Bouzin C; Jordan BF; Demeur G; Haufroid V; Feron O; Sonveaux P; Gallez B
    NMR Biomed; 2015 Mar; 28(3):367-75. PubMed ID: 25611487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brown adipose tissue activity controls triglyceride clearance.
    Bartelt A; Bruns OT; Reimer R; Hohenberg H; Ittrich H; Peldschus K; Kaul MG; Tromsdorf UI; Weller H; Waurisch C; Eychmüller A; Gordts PL; Rinninger F; Bruegelmann K; Freund B; Nielsen P; Merkel M; Heeren J
    Nat Med; 2011 Feb; 17(2):200-5. PubMed ID: 21258337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of proton relaxation near superparamagnetic iron oxide particle-loaded polymer threads for magnetic susceptibility difference quantification.
    Donker HC; Krämer NA; Otto J; Klinge U; Slabu I; Baumann M; Kuhl CK
    Invest Radiol; 2012 Jun; 47(6):359-67. PubMed ID: 22543968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging monocytes with iron oxide nanoparticles targeted towards the monocyte integrin MAC-1 (CD11b/CD18) does not result in improved atherosclerotic plaque detection by in vivo MRI.
    von zur Muhlen C; Fink-Petri A; Salaklang J; Paul D; Neudorfer I; Berti V; Merkle A; Peter K; Bode C; von Elverfeldt D
    Contrast Media Mol Imaging; 2010; 5(5):268-75. PubMed ID: 20973112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing.
    Kuhlpeter R; Dahnke H; Matuszewski L; Persigehl T; von Wallbrunn A; Allkemper T; Heindel WL; Schaeffter T; Bremer C
    Radiology; 2007 Nov; 245(2):449-57. PubMed ID: 17848680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of BAT activity by targeted molecular magnetic resonance imaging.
    Hu Q; Cao H; Zhou L; Liu J; Di W; Lv S; Ding G; Tang L
    Magn Reson Imaging; 2021 Apr; 77():1-6. PubMed ID: 33309921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The behavior after intravenous injection in mice of multiwalled carbon nanotube / Fe3O4 hybrid MRI contrast agents.
    Wu H; Liu G; Zhuang Y; Wu D; Zhang H; Yang H; Hu H; Yang S
    Biomaterials; 2011 Jul; 32(21):4867-76. PubMed ID: 21459436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a clinically approved iron oxide MRI contrast agent to label human hepatocytes.
    Puppi J; Mitry RR; Modo M; Dhawan A; Raja K; Hughes RD
    Cell Transplant; 2011; 20(6):963-75. PubMed ID: 21092412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of brown adipose tissue mass using a novel dual-echo magnetic resonance imaging approach: a validation study.
    Holstila M; Virtanen KA; Grönroos TJ; Laine J; Lepomäki V; Saunavaara J; Lisinen I; Komu M; Hannukainen JC; Nuutila P; Parkkola R; Borra RJ
    Metabolism; 2013 Aug; 62(8):1189-98. PubMed ID: 23587549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted Molecular Magnetic Resonance Imaging Detects Brown Adipose Tissue with Ultrasmall Superparamagnetic Iron Oxide.
    Hu Q; Chen X; Liu J; Di W; Lv S; Tang L; Ding G
    Biomed Res Int; 2018; 2018():3619548. PubMed ID: 30406134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adipose tissue macrophages: MR tracking to monitor obesity-associated inflammation.
    Luciani A; Dechoux S; Deveaux V; Poirier-Quinot M; Luciani N; Levy M; Ballet S; Manin S; Péchoux C; Autret G; Clément O; Rahmouni A; Mallat A; Wilhelm C; Lotersztajn S; Gazeau F
    Radiology; 2012 Jun; 263(3):786-93. PubMed ID: 22523321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-inflammatory drug evaluation in ApoE-/- mice by ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging.
    Sigovan M; Kaye E; Lancelot E; Corot C; Provost N; Majd Z; Breisse M; Canet-Soulas E
    Invest Radiol; 2012 Sep; 47(9):546-52. PubMed ID: 22864378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.