These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26674225)

  • 1. GPCR-drug interactions prediction using random forest with drug-association-matrix-based post-processing procedure.
    Hu J; Li Y; Yang JY; Shen HB; Yu DJ
    Comput Biol Chem; 2016 Feb; 60():59-71. PubMed ID: 26674225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPCR-MPredictor: multi-level prediction of G protein-coupled receptors using genetic ensemble.
    Naveed M; Khan A
    Amino Acids; 2012 May; 42(5):1809-23. PubMed ID: 21505826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPCR-2L: predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions.
    Xiao X; Wang P; Chou KC
    Mol Biosyst; 2011 Mar; 7(3):911-9. PubMed ID: 21180772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of potential drug-targets by combining evolutionary information extracted from frequency profiles and molecular topological structures.
    Wang L; You ZH; Li LP; Yan X; Zhang W; Song KJ; Song CD
    Chem Biol Drug Des; 2020 Aug; 96(2):758-767. PubMed ID: 31393672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information.
    Wang L; You ZH; Chen X; Yan X; Liu G; Zhang W
    Curr Protein Pept Sci; 2018; 19(5):445-454. PubMed ID: 27842479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPCR-CA: A cellular automaton image approach for predicting G-protein-coupled receptor functional classes.
    Xiao X; Wang P; Chou KC
    J Comput Chem; 2009 Jul; 30(9):1414-23. PubMed ID: 19037861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying GPCR-drug interaction based on wordbook learning from sequences.
    Wang P; Huang X; Qiu W; Xiao X
    BMC Bioinformatics; 2020 Apr; 21(1):150. PubMed ID: 32312232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure.
    Shi H; Liu S; Chen J; Li X; Ma Q; Yu B
    Genomics; 2019 Dec; 111(6):1839-1852. PubMed ID: 30550813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest.
    Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing protein-vitamin binding residues prediction by multiple heterogeneous subspace SVMs ensemble.
    Yu DJ; Hu J; Yan H; Yang XB; Yang JY; Shen HB
    BMC Bioinformatics; 2014 Sep; 15(1):297. PubMed ID: 25189131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cascade Random Forests Algorithm for Predicting Protein-Protein Interaction Sites.
    Wei ZS; Yang JY; Shen HB; Yu DJ
    IEEE Trans Nanobioscience; 2015 Oct; 14(7):746-60. PubMed ID: 26441427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disulfide Connectivity Prediction Based on Modelled Protein 3D Structural Information and Random Forest Regression.
    Yu DJ; Li Y; Hu J; Yang X; Yang JY; Shen HB
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):611-21. PubMed ID: 26357272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular interaction fingerprint approaches for GPCR drug discovery.
    Vass M; Kooistra AJ; Ritschel T; Leurs R; de Esch IJ; de Graaf C
    Curr Opin Pharmacol; 2016 Oct; 30():59-68. PubMed ID: 27479316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines.
    Nie G; Li Y; Wang F; Wang S; Hu X
    Biomed Mater Eng; 2015; 26 Suppl 1():S1829-36. PubMed ID: 26405954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifying G protein-coupled receptors and nuclear receptors on the basis of protein power spectrum from fast Fourier transform.
    Guo YZ; Li M; Lu M; Wen Z; Wang K; Li G; Wu J
    Amino Acids; 2006 Jun; 30(4):397-402. PubMed ID: 16773242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach.
    Xiao X; Min JL; Lin WZ; Liu Z; Cheng X; Chou KC
    J Biomol Struct Dyn; 2015; 33(10):2221-33. PubMed ID: 25513722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences.
    Huang YA; You ZH; Chen X
    Curr Protein Pept Sci; 2018; 19(5):468-478. PubMed ID: 27875970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GLIDA: GPCR-ligand database for chemical genomic drug discovery.
    Okuno Y; Yang J; Taneishi K; Yabuuchi H; Tsujimoto G
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D673-7. PubMed ID: 16381956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR-Drug Interaction Based on Wordbook Learning From Sequences.
    Qiu W; Lv Z; Hong Y; Jia J; Xiao X
    Front Cell Dev Biol; 2020; 8():623858. PubMed ID: 33598456
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.