BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26674414)

  • 41. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma.
    Tomaselli S; Galeano F; Alon S; Raho S; Galardi S; Polito VA; Presutti C; Vincenti S; Eisenberg E; Locatelli F; Gallo A
    Genome Biol; 2015 Jan; 16(1):5. PubMed ID: 25582055
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A robust model for quantitative prediction of the silencing efficacy of wild-type and A-to-I edited miRNAs.
    Tian S; Terai G; Kobayashi Y; Kimura Y; Abe H; Asai K; Ui-Tei K
    RNA Biol; 2020 Feb; 17(2):264-280. PubMed ID: 31601146
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of microRNAs with heat stress responsive and immune properties in Marsupenaeus japonicus based on next-generation sequencing and bioinformatics analysis: Essential regulators in the heat stress-host interactions.
    Zheng J; Cao J; Mao Y; Su Y; Wang J
    Fish Shellfish Immunol; 2018 Oct; 81():390-398. PubMed ID: 29778844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage.
    Scadden AD
    Nat Struct Mol Biol; 2005 Jun; 12(6):489-96. PubMed ID: 15895094
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-wide identification of translationally inhibited and degraded miR-155 targets using RNA-interacting protein-IP.
    Meier J; Hovestadt V; Zapatka M; Pscherer A; Lichter P; Seiffert M
    RNA Biol; 2013 Jun; 10(6):1018-29. PubMed ID: 23673373
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adenosine deamination in human transcripts generates novel microRNA binding sites.
    Borchert GM; Gilmore BL; Spengler RM; Xing Y; Lanier W; Bhattacharya D; Davidson BL
    Hum Mol Genet; 2009 Dec; 18(24):4801-7. PubMed ID: 19776031
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance.
    Hendrickson DG; Hogan DJ; Herschlag D; Ferrell JE; Brown PO
    PLoS One; 2008 May; 3(5):e2126. PubMed ID: 18461144
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The miRNA biogenesis factors, p72/DDX17 and KHSRP regulate the protein level of Ago2 in human cells.
    Connerty P; Bajan S; Remenyi J; Fuller-Pace FV; Hutvagner G
    Biochim Biophys Acta; 2016 Oct; 1859(10):1299-305. PubMed ID: 27478153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative analysis of shrimp (Penaeus vannamei) miRNAs expression profiles during WSSV infection under experimental conditions and in pond culture.
    Shekhar MS; Karthic K; Kumar KV; Kumar JA; Swathi A; Hauton C; Peruzza L; Vijayan KK
    Fish Shellfish Immunol; 2019 Oct; 93():288-295. PubMed ID: 31330255
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combinatory RNA-Sequencing Analyses Reveal a Dual Mode of Gene Regulation by ADAR1 in Gastric Cancer.
    Cho CJ; Jung J; Jiang L; Lee EJ; Kim DS; Kim BS; Kim HS; Jung HY; Song HJ; Hwang SW; Park Y; Jung MK; Pack CG; Myung SJ; Chang S
    Dig Dis Sci; 2018 Jul; 63(7):1835-1850. PubMed ID: 29691780
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gene silencing in vitro and in vivo using intronic microRNAs.
    Deng JH; Deng P; Lin SL; Ying SY
    Methods Mol Biol; 2015; 1218():321-40. PubMed ID: 25319661
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Statistical use of argonaute expression and RISC assembly in microRNA target identification.
    Stanhope SA; Sengupta S; den Boon J; Ahlquist P; Newton MA
    PLoS Comput Biol; 2009 Sep; 5(9):e1000516. PubMed ID: 19779550
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture.
    Flores O; Nakayama S; Whisnant AW; Javanbakht H; Cullen BR; Bloom DC
    J Virol; 2013 Jun; 87(12):6589-603. PubMed ID: 23536669
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-throughput analysis of the RNA-induced silencing complex in myotonic dystrophy type 1 patients identifies the dysregulation of miR-29c and its target ASB2.
    Cappella M; Perfetti A; Cardinali B; Garcia-Manteiga JM; Carrara M; Provenzano C; Fuschi P; Cardani R; Renna LV; Meola G; Falcone G; Martelli F
    Cell Death Dis; 2018 Jun; 9(7):729. PubMed ID: 29955039
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ADAR-mediated RNA editing in non-coding RNA sequences.
    Yang Y; Zhou X; Jin Y
    Sci China Life Sci; 2013 Oct; 56(10):944-52. PubMed ID: 24008387
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conserved microRNA editing in mammalian evolution, development and disease.
    Warnefors M; Liechti A; Halbert J; Valloton D; Kaessmann H
    Genome Biol; 2014 Jun; 15(6):R83. PubMed ID: 24964909
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic recruitment of microRNAs to their mRNA targets in the regenerating liver.
    Schug J; McKenna LB; Walton G; Hand N; Mukherjee S; Essuman K; Shi Z; Gao Y; Markley K; Nakagawa M; Kameswaran V; Vourekas A; Friedman JR; Kaestner KH; Greenbaum LE
    BMC Genomics; 2013 Apr; 14():264. PubMed ID: 23597149
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure-mediated modulation of mRNA abundance by A-to-I editing.
    Brümmer A; Yang Y; Chan TW; Xiao X
    Nat Commun; 2017 Nov; 8(1):1255. PubMed ID: 29093448
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A-to-I RNA Editing Up-regulates Human Dihydrofolate Reductase in Breast Cancer.
    Nakano M; Fukami T; Gotoh S; Nakajima M
    J Biol Chem; 2017 Mar; 292(12):4873-4884. PubMed ID: 28188287
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antagonistic and stimulative roles of ADAR1 in RNA silencing.
    Nishikura K; Sakurai M; Ariyoshi K; Ota H
    RNA Biol; 2013 Aug; 10(8):1240-7. PubMed ID: 23949595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.