These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 26674956)
21. Intraguild Predation in Heteroptera: Effects of Density and Predator Identity on Dipteran Prey. Brahma S; Sharma D; Kundu M; Saha N; Saha GK; Aditya G Neotrop Entomol; 2015 Aug; 44(4):374-84. PubMed ID: 26174962 [TBL] [Abstract][Full Text] [Related]
22. Prey perception of predation risk: volatile chemical cues mediate non-consumptive effects of a predator on a herbivorous insect. Hermann SL; Thaler JS Oecologia; 2014 Nov; 176(3):669-76. PubMed ID: 25234373 [TBL] [Abstract][Full Text] [Related]
23. Prey-predator relationship between the cyclopoids Mesocyclops longisetus and Mesocyclops meridianus with Anopheles aquasalis larvae. Pernía J; de Zoppi RE; Palacios-Cáceres M J Am Mosq Control Assoc; 2007 Jun; 23(2):166-71. PubMed ID: 17847849 [TBL] [Abstract][Full Text] [Related]
24. Anti-mosquito midgut antibodies block development of Plasmodium falciparum and Plasmodium vivax in multiple species of Anopheles mosquitoes and reduce vector fecundity and survivorship. Lal AA; Patterson PS; Sacci JB; Vaughan JA; Paul C; Collins WE; Wirtz RA; Azad AF Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5228-33. PubMed ID: 11309510 [TBL] [Abstract][Full Text] [Related]
25. Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Mbogo CM; Mwangangi JM; Nzovu J; Gu W; Yan G; Gunter JT; Swalm C; Keating J; Regens JL; Shililu JI; Githure JI; Beier JC Am J Trop Med Hyg; 2003 Jun; 68(6):734-42. PubMed ID: 12887036 [TBL] [Abstract][Full Text] [Related]
26. Assessment of the developmental success of Anopheles coluzzii larvae under different nutrient regimes: effects of diet quality, food amount and larval density. Epopa PS; Maiga H; Hien DFS; Dabire RK; Lees RS; Giles J; Tripet F; Baldet T; Damiens D; Diabate A Malar J; 2018 Oct; 17(1):377. PubMed ID: 30348155 [TBL] [Abstract][Full Text] [Related]
27. Predation ability and non-consumptive effects of Notonecta sellata (Heteroptera: Notonectidae) on immature stages of Culex pipiens (Diptera: Culicidae). Fischer S; Pereyra D; Fernández L J Vector Ecol; 2012 Jun; 37(1):245-51. PubMed ID: 22548560 [TBL] [Abstract][Full Text] [Related]
28. Living with predators at the larval stage has differential long-lasting effects on adult life history and physiological traits in two anopheline mosquito species. Roux O; Renault D; Mouline K; Diabaté A; Simard F J Insect Physiol; 2021; 131():104234. PubMed ID: 33831434 [No Abstract] [Full Text] [Related]
29. Bionomics of malaria vectors and relationship with malaria transmission and epidemiology in three physiographic zones in the Senegal River Basin. Dia I; Konate L; Samb B; Sarr JB; Diop A; Rogerie F; Faye M; Riveau G; Remoue F; Diallo M; Fontenille D Acta Trop; 2008 Feb; 105(2):145-53. PubMed ID: 18068685 [TBL] [Abstract][Full Text] [Related]
30. Capacity of mosquitoes to transmit malaria depends on larval environment. Moller-Jacobs LL; Murdock CC; Thomas MB Parasit Vectors; 2014 Dec; 7():593. PubMed ID: 25496502 [TBL] [Abstract][Full Text] [Related]
31. Small-scale land-use variability affects Anopheles spp. distribution and concomitant Plasmodium infection in humans and mosquito vectors in southeastern Madagascar. Zohdy S; Derfus K; Headrick EG; Andrianjafy MT; Wright PC; Gillespie TR Malar J; 2016 Feb; 15():114. PubMed ID: 26944051 [TBL] [Abstract][Full Text] [Related]
32. Allometric scaling of indirect effects: body size ratios predict non-consumptive effects in multi-predator systems. Krenek L; Rudolf VH J Anim Ecol; 2014 Nov; 83(6):1461-8. PubMed ID: 24910170 [TBL] [Abstract][Full Text] [Related]
34. Genetic loci affecting resistance to human malaria parasites in a West African mosquito vector population. Niaré O; Markianos K; Volz J; Oduol F; Touré A; Bagayoko M; Sangaré D; Traoré SF; Wang R; Blass C; Dolo G; Bouaré M; Kafatos FC; Kruglyak L; Touré YT; Vernick KD Science; 2002 Oct; 298(5591):213-6. PubMed ID: 12364806 [TBL] [Abstract][Full Text] [Related]
35. Anopheles hervyi in Niger: no evidence for a role in Plasmodium falciparum transmission. Labbo R; Czeher C; Djibrila A; Arzika I; Jeanne I; Duchemin JB Med Vet Entomol; 2010 Mar; 24(1):62-5. PubMed ID: 19903247 [TBL] [Abstract][Full Text] [Related]
37. Low prevalence of Plasmodium and absence of malaria transmission in Conakry, Guinea: prospects for elimination. Kouassi BL; de Souza DK; Goepogui A; Balde SM; Diakité L; Sagno A; Djameh GI; Chammartin F; Vounatsou P; Bockarie MJ; Utzinger J; Koudou BG Malar J; 2016 Mar; 15():175. PubMed ID: 26987480 [TBL] [Abstract][Full Text] [Related]
38. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria. Molina-Cruz A; Zilversmit MM; Neafsey DE; Hartl DL; Barillas-Mury C Annu Rev Genet; 2016 Nov; 50():447-465. PubMed ID: 27732796 [TBL] [Abstract][Full Text] [Related]
39. Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparum transmission-blocking vaccine. Lavazec C; Boudin C; Lacroix R; Bonnet S; Diop A; Thiberge S; Boisson B; Tahar R; Bourgouin C Infect Immun; 2007 Apr; 75(4):1635-42. PubMed ID: 17283100 [TBL] [Abstract][Full Text] [Related]
40. How does an Ethiopian dam increase malaria? Entomological determinants around the Koka reservoir. Kibret S; Lautze J; Boelee E; McCartney M Trop Med Int Health; 2012 Nov; 17(11):1320-8. PubMed ID: 22909096 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]