These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 2667520)
1. Nicking of single chain Clostridium botulinum type A neurotoxin by an endogenous protease. Dekleva ML; DasGupta BR Biochem Biophys Res Commun; 1989 Jul; 162(2):767-72. PubMed ID: 2667520 [TBL] [Abstract][Full Text] [Related]
2. Botulinum neurotoxin type A: sequence of amino acids at the N-terminus and around the nicking site. DasGupta BR; Dekleva ML Biochimie; 1990 Sep; 72(9):661-4. PubMed ID: 2126206 [TBL] [Abstract][Full Text] [Related]
3. Purification and characterization of a protease from Clostridium botulinum type A that nicks single-chain type A botulinum neurotoxin into the di-chain form. Dekleva ML; Dasgupta BR J Bacteriol; 1990 May; 172(5):2498-503. PubMed ID: 2185224 [TBL] [Abstract][Full Text] [Related]
4. Botulinum neurotoxin types B and E: purification, limited proteolysis by endoproteinase Glu-C and pepsin, and comparison of their identified cleaved sites relative to the three-dimensional structure of type A neurotoxin. Prabakaran S; Tepp W; DasGupta BR Toxicon; 2001 Oct; 39(10):1515-31. PubMed ID: 11478959 [TBL] [Abstract][Full Text] [Related]
5. Activation of botulinum toxins in the absence of nicking. Ohishi I; Sakaguchi G Infect Immun; 1977 Aug; 17(2):402-7. PubMed ID: 19360 [TBL] [Abstract][Full Text] [Related]
6. Botulinum neurotoxin types A, B, and E: fragmentations by autoproteolysis and other mechanisms including by O-phenanthroline-dithiothreitol, and association of the dinucleotides NAD(+)/NADH with the heavy chain of the three neurotoxins. Dasgupta BR; Antharavally BS; Tepp W; Evenson ML Protein J; 2005 Aug; 24(6):337-68. PubMed ID: 16323041 [TBL] [Abstract][Full Text] [Related]
7. Botulinum neurotoxin type A: limited proteolysis by endoproteinase Glu-C and alpha-chymotrypsin enhanced following reduction; identification of the cleaved sites and fragments. Beecher DJ; DasGupta BR J Protein Chem; 1997 Oct; 16(7):701-12. PubMed ID: 9330228 [TBL] [Abstract][Full Text] [Related]
8. Circular dichroic and fluorescence spectroscopic study of the conformation of botulinum neurotoxin types A and E. Datta A; DasGupta BR Mol Cell Biochem; 1988 Feb; 79(2):153-9. PubMed ID: 3398838 [TBL] [Abstract][Full Text] [Related]
10. Covalent structure of botulinum neurotoxin type B; location of sulfhydryl groups and disulfide bridge and identification of C-termini of light and heavy chains. Antharavally BS; DasGupta BR J Protein Chem; 1998 Jul; 17(5):417-28. PubMed ID: 9717738 [TBL] [Abstract][Full Text] [Related]
11. Activation of Clostridium botulinum type B toxin by an endogenous enzyme. DasGupta BR J Bacteriol; 1971 Dec; 108(3):1051-7. PubMed ID: 4945183 [TBL] [Abstract][Full Text] [Related]
12. Molecular characterization of the protease from Clostridium botulinum serotype C responsible for nicking in botulinum neurotoxin complex. Suzuki T; Yoneyama T; Miyata K; Mikami A; Chikai T; Inui K; Kouguchi H; Niwa K; Watanabe T; Miyazaki S; Ohyama T Biochem Biophys Res Commun; 2009 Feb; 379(2):309-13. PubMed ID: 19103155 [TBL] [Abstract][Full Text] [Related]
13. Molecular forms of neurotoxins in proteolytic Clostridium botulinum type B cultures. Dasgupta BR; Sugiyama H Infect Immun; 1976 Sep; 14(3):680-6. PubMed ID: 965092 [TBL] [Abstract][Full Text] [Related]
14. Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B, and E. Sathyamoorthy V; DasGupta BR J Biol Chem; 1985 Sep; 260(19):10461-6. PubMed ID: 4030755 [TBL] [Abstract][Full Text] [Related]
15. Role of a protease in natural activation of Clostridium botulinum neurotoxin. Das Gupta BR; Sugiyama H Infect Immun; 1972 Oct; 6(4):587-90. PubMed ID: 4564288 [TBL] [Abstract][Full Text] [Related]
16. Responses of Clostridium botulinum type B and E progenitor toxins to some clostridial sulfhydryl-dependent proteases. Oishi I; Okada T; Sakaguchi G Jpn J Med Sci Biol; 1975 Jun; 28(3):157-64. PubMed ID: 1104932 [TBL] [Abstract][Full Text] [Related]
17. Botulinum type A neurotoxin digested with pepsin yields 132, 97, 72, 45, 42, and 18 kD fragments. Gimenez JA; DasGupta BR J Protein Chem; 1993 Jun; 12(3):351-63. PubMed ID: 8397793 [TBL] [Abstract][Full Text] [Related]
18. Characterization of toxin complex produced by a unique strain of Clostridium botulinum serotype D 4947. Hasegawa K; Watanabe T; Sato H; Sagane Y; Mutoh S; Suzuki T; Yamano A; Kouguchi H; Takeshi K; Kamaguchi A; Fujinaga Y; Oguma K; Ohyama T Protein J; 2004 Aug; 23(6):371-8. PubMed ID: 15517984 [TBL] [Abstract][Full Text] [Related]
19. Covalent structure of botulinum neurotoxin type E: location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains. Antharavally BS; DasGupta BR J Protein Chem; 1997 Nov; 16(8):787-99. PubMed ID: 9365927 [TBL] [Abstract][Full Text] [Related]
20. Response of type B and E Botulinum toxins to purified sulfhydryl-dependent protease produced by Clostridium botulinum type F. Ohishi I; Sakaguchi G Jpn J Med Sci Biol; 1977 Aug; 30(4):179-90. PubMed ID: 20527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]