BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2667520)

  • 1. Nicking of single chain Clostridium botulinum type A neurotoxin by an endogenous protease.
    Dekleva ML; DasGupta BR
    Biochem Biophys Res Commun; 1989 Jul; 162(2):767-72. PubMed ID: 2667520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Botulinum neurotoxin type A: sequence of amino acids at the N-terminus and around the nicking site.
    DasGupta BR; Dekleva ML
    Biochimie; 1990 Sep; 72(9):661-4. PubMed ID: 2126206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of a protease from Clostridium botulinum type A that nicks single-chain type A botulinum neurotoxin into the di-chain form.
    Dekleva ML; Dasgupta BR
    J Bacteriol; 1990 May; 172(5):2498-503. PubMed ID: 2185224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Botulinum neurotoxin types B and E: purification, limited proteolysis by endoproteinase Glu-C and pepsin, and comparison of their identified cleaved sites relative to the three-dimensional structure of type A neurotoxin.
    Prabakaran S; Tepp W; DasGupta BR
    Toxicon; 2001 Oct; 39(10):1515-31. PubMed ID: 11478959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of botulinum toxins in the absence of nicking.
    Ohishi I; Sakaguchi G
    Infect Immun; 1977 Aug; 17(2):402-7. PubMed ID: 19360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Botulinum neurotoxin types A, B, and E: fragmentations by autoproteolysis and other mechanisms including by O-phenanthroline-dithiothreitol, and association of the dinucleotides NAD(+)/NADH with the heavy chain of the three neurotoxins.
    Dasgupta BR; Antharavally BS; Tepp W; Evenson ML
    Protein J; 2005 Aug; 24(6):337-68. PubMed ID: 16323041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Botulinum neurotoxin type A: limited proteolysis by endoproteinase Glu-C and alpha-chymotrypsin enhanced following reduction; identification of the cleaved sites and fragments.
    Beecher DJ; DasGupta BR
    J Protein Chem; 1997 Oct; 16(7):701-12. PubMed ID: 9330228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circular dichroic and fluorescence spectroscopic study of the conformation of botulinum neurotoxin types A and E.
    Datta A; DasGupta BR
    Mol Cell Biochem; 1988 Feb; 79(2):153-9. PubMed ID: 3398838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Botulinum neurotoxin types A, B & E: pH induced difference spectra.
    Datta A; DasGupta BR
    Mol Cell Biochem; 1988 Jun; 81(2):187-94. PubMed ID: 3050452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent structure of botulinum neurotoxin type B; location of sulfhydryl groups and disulfide bridge and identification of C-termini of light and heavy chains.
    Antharavally BS; DasGupta BR
    J Protein Chem; 1998 Jul; 17(5):417-28. PubMed ID: 9717738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of Clostridium botulinum type B toxin by an endogenous enzyme.
    DasGupta BR
    J Bacteriol; 1971 Dec; 108(3):1051-7. PubMed ID: 4945183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of the protease from Clostridium botulinum serotype C responsible for nicking in botulinum neurotoxin complex.
    Suzuki T; Yoneyama T; Miyata K; Mikami A; Chikai T; Inui K; Kouguchi H; Niwa K; Watanabe T; Miyazaki S; Ohyama T
    Biochem Biophys Res Commun; 2009 Feb; 379(2):309-13. PubMed ID: 19103155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular forms of neurotoxins in proteolytic Clostridium botulinum type B cultures.
    Dasgupta BR; Sugiyama H
    Infect Immun; 1976 Sep; 14(3):680-6. PubMed ID: 965092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B, and E.
    Sathyamoorthy V; DasGupta BR
    J Biol Chem; 1985 Sep; 260(19):10461-6. PubMed ID: 4030755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of a protease in natural activation of Clostridium botulinum neurotoxin.
    Das Gupta BR; Sugiyama H
    Infect Immun; 1972 Oct; 6(4):587-90. PubMed ID: 4564288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of Clostridium botulinum type B and E progenitor toxins to some clostridial sulfhydryl-dependent proteases.
    Oishi I; Okada T; Sakaguchi G
    Jpn J Med Sci Biol; 1975 Jun; 28(3):157-64. PubMed ID: 1104932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Botulinum type A neurotoxin digested with pepsin yields 132, 97, 72, 45, 42, and 18 kD fragments.
    Gimenez JA; DasGupta BR
    J Protein Chem; 1993 Jun; 12(3):351-63. PubMed ID: 8397793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of type B and E Botulinum toxins to purified sulfhydryl-dependent protease produced by Clostridium botulinum type F.
    Ohishi I; Sakaguchi G
    Jpn J Med Sci Biol; 1977 Aug; 30(4):179-90. PubMed ID: 20527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of toxin complex produced by a unique strain of Clostridium botulinum serotype D 4947.
    Hasegawa K; Watanabe T; Sato H; Sagane Y; Mutoh S; Suzuki T; Yamano A; Kouguchi H; Takeshi K; Kamaguchi A; Fujinaga Y; Oguma K; Ohyama T
    Protein J; 2004 Aug; 23(6):371-8. PubMed ID: 15517984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent structure of botulinum neurotoxin type E: location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains.
    Antharavally BS; DasGupta BR
    J Protein Chem; 1997 Nov; 16(8):787-99. PubMed ID: 9365927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.