These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26675341)

  • 21. Hydrothermal synthesis of nickel oxide nanosheets for lithium-ion batteries and supercapacitors with excellent performance.
    Mondal AK; Su D; Wang Y; Chen S; Wang G
    Chem Asian J; 2013 Nov; 8(11):2828-32. PubMed ID: 23929754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode.
    Kang W; Tang Y; Li W; Yang X; Xue H; Yang Q; Lee CS
    Nanoscale; 2015 Jan; 7(1):225-31. PubMed ID: 25406536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High Capacity MoO2/Graphite Oxide Composite Anode for Lithium-Ion Batteries.
    Xu Y; Yi R; Yuan B; Wu X; Dunwell M; Lin Q; Fei L; Deng S; Andersen P; Wang D; Luo H
    J Phys Chem Lett; 2012 Feb; 3(3):309-14. PubMed ID: 26285844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries.
    Shen X; Mu D; Chen S; Wu B; Wu F
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties.
    Zhang G; Lou XW
    Angew Chem Int Ed Engl; 2014 Aug; 53(34):9041-4. PubMed ID: 24962932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries.
    Zhang Z; Wang Y; Tan Q; Zhong Z; Su F
    J Colloid Interface Sci; 2013 May; 398():185-92. PubMed ID: 23489612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile synthesis of Ge@C core-shell nanocomposites for high-performance lithium storage in lithium-ion batteries.
    Wang Y; Wang G
    Chem Asian J; 2013 Dec; 8(12):3142-6. PubMed ID: 24006143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sol-Gel Synthesis and in Situ X-ray Diffraction Study of Li
    Luo M; Yu H; Cheng X; Ye W; Zhu H; Liu T; Peng N; Shui M; Shu J
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12716-12721. PubMed ID: 29595243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries.
    Yang T; Lu B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4115-21. PubMed ID: 24448608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrathin Na1.1V3O7.9 nanobelts with superior performance as cathode materials for lithium-ion batteries.
    Liang S; Zhou J; Fang G; Liu J; Tang Y; Li X; Pan A
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8704-9. PubMed ID: 23947682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries.
    Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L
    ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
    Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q
    Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The facile synthesis and electrochemical performance of Ni
    Zhou Z; Zhang J; Duan H; Chen S; Yao H; Zhao Y; Kuang Q; Fan Q; Dong Y
    Dalton Trans; 2021 Jun; 50(21):7293-7304. PubMed ID: 33955440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lithium- and Magnesium-Storage Mechanisms of Novel Hexagonal NbSe
    Peng C; Lyu H; Wu L; Xiong T; Xiong F; Liu Z; An Q; Mai L
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36988-36995. PubMed ID: 30299077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porous α-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability.
    Ma F; Yuan A; Xu J; Hu P
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15531-41. PubMed ID: 26132052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Construction of WO
    Zhang Y; Zhu K; Li R; Zeng S; Wang L
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries.
    Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y
    Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. H
    Yuan Y; Yu H; Cheng X; Ye W; Liu T; Zheng R; Long N; Shui M; Shu J
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9136-9143. PubMed ID: 30763061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.