These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26675487)

  • 1. Joint analysis of extracellular spike waveforms and neuronal network bursts.
    Kapucu FE; Mäkinen ME; Tanskanen JMA; Ylä-Outinen L; Narkilahti S; Hyttinen JAK
    J Neurosci Methods; 2016 Feb; 259():143-155. PubMed ID: 26675487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays.
    Krause G; Lehmann S; Lehmann M; Freund I; Schreiber E; Baumann W
    Biosens Bioelectron; 2006 Jan; 21(7):1272-82. PubMed ID: 16006112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of computational methods for detecting bursts in neuronal spike trains and their application to human stem cell-derived neuronal networks.
    Cotterill E; Charlesworth P; Thomas CW; Paulsen O; Eglen SJ
    J Neurophysiol; 2016 Aug; 116(2):306-21. PubMed ID: 27098024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A self-adapting approach for the detection of bursts and network bursts in neuronal cultures.
    Pasquale V; Martinoia S; Chiappalone M
    J Comput Neurosci; 2010 Aug; 29(1-2):213-229. PubMed ID: 19669401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient sequential Bayesian inference method for real-time detection and sorting of overlapped neural spikes.
    Haga T; Fukayama O; Takayama Y; Hoshino T; Mabuchi K
    J Neurosci Methods; 2013 Sep; 219(1):92-103. PubMed ID: 23856211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic activity and positive feedback in motor circuits in organotypic spinal cord slice cultures.
    Magloire V; Streit J
    Eur J Neurosci; 2009 Oct; 30(8):1487-97. PubMed ID: 19811528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Human Stem Cell-Derived Neuronal Cell Culturing and Analysis.
    Ylä-Outinen L; Tanskanen JMA; Kapucu FE; Hyysalo A; Hyttinen JAK; Narkilahti S
    Adv Neurobiol; 2019; 22():299-329. PubMed ID: 31073942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics.
    Kapucu FE; Tanskanen JM; Mikkonen JE; Ylä-Outinen L; Narkilahti S; Hyttinen JA
    Front Comput Neurosci; 2012; 6():38. PubMed ID: 22723778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike detection and sorting using PARAFAC2 method.
    Just T; Weis M; Husar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5486-9. PubMed ID: 25571236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multineuronal spike classification based on multisite electrode recording, whole-waveform analysis, and hierarchical clustering.
    Kaneko H; Suzuki SS; Okada J; Akamatsu M
    IEEE Trans Biomed Eng; 1999 Mar; 46(3):280-90. PubMed ID: 10097463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term electrophysiological activity and pharmacological response of a human induced pluripotent stem cell-derived neuron and astrocyte co-culture.
    Odawara A; Saitoh Y; Alhebshi AH; Gotoh M; Suzuki I
    Biochem Biophys Res Commun; 2014 Jan; 443(4):1176-81. PubMed ID: 24406164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes.
    Takahashi S; Anzai Y; Sakurai Y
    J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of adaptive network burst detection methods for multielectrode array data and the generation of artificial spike patterns for method evaluation.
    Mendis GD; Morrisroe E; Petrou S; Halgamuge SK
    J Neural Eng; 2016 Apr; 13(2):026009. PubMed ID: 26861133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex evolution of spike patterns during burst propagation through feed-forward networks.
    Teramae JN; Fukai T
    Biol Cybern; 2008 Aug; 99(2):105-14. PubMed ID: 18685860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The string method of burst identification in neuronal spike trains.
    Turnbull L; Dian E; Gross G
    J Neurosci Methods; 2005 Jun; 145(1-2):23-35. PubMed ID: 15922023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro cortical neuronal networks as a new high-sensitive system for biosensing applications.
    Martinoia S; Bonzano L; Chiappalone M; Tedesco M; Marcoli M; Maura G
    Biosens Bioelectron; 2005 Apr; 20(10):2071-8. PubMed ID: 15741077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays.
    Li Y; Zhou W; Li X; Zeng S; Liu M; Luo Q
    Biosens Bioelectron; 2007 Jun; 22(12):2976-82. PubMed ID: 17240134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification and automatized adaptive detection of in vivo and in vitro neuronal bursts based on signal complexity.
    Kapucu FE; Mikkonen JE; Tanskanen JM; Hyttinen JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4729-32. PubMed ID: 26737350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect fingerprints of antipsychotic drugs on neural networks in vitro.
    Görtz P; Henning U; Theiss S; Lange-Asschenfeldt C
    J Neural Transm (Vienna); 2019 Oct; 126(10):1363-1371. PubMed ID: 31321550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic presynaptic suppression of neuronal network bursts.
    Cohen D; Segal M
    J Neurophysiol; 2009 Apr; 101(4):2077-88. PubMed ID: 19193770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.