These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26675674)

  • 1. Iron-mineral accretion from acid mine drainage and its application in passive treatment.
    Florence K; Sapsford DJ; Johnson DB; Kay CM; Wolkersdorfer C
    Environ Technol; 2016; 37(11):1428-40. PubMed ID: 26675674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of each compartment in a two-compartment vertical flow reactor for ferruginous mine water treatment.
    Yim GJ; Cheong YW; Hong JH; Hur W
    Water Res; 2014 Oct; 62():11-9. PubMed ID: 24929991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sizing criteria for a low footprint passive mine water treatment system.
    Sapsford DJ; Williams KP
    Water Res; 2009 Feb; 43(2):423-32. PubMed ID: 19022469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.
    Grettenberger CL; Pearce AR; Bibby KJ; Jones DS; Burgos WD; Macalady JL
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28087535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.
    Hedrich S; Johnson DB
    Bioresour Technol; 2012 Feb; 106():44-9. PubMed ID: 22197072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD).
    Fernandez-Rojo L; Héry M; Le Pape P; Braungardt C; Desoeuvre A; Torres E; Tardy V; Resongles E; Laroche E; Delpoux S; Joulian C; Battaglia-Brunet F; Boisson J; Grapin G; Morin G; Casiot C
    Water Res; 2017 Oct; 123():594-606. PubMed ID: 28709104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation.
    Park JH; Kim BS; Chon CM
    Chemosphere; 2018 Jan; 191():245-252. PubMed ID: 29035796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of iron(II)-rich acid mine water with limestone and oxygen.
    Mohajane GB; Maree JP; Panichev N
    Water Sci Technol; 2014; 70(2):209-17. PubMed ID: 25051466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined upflow anaerobic sludge bed and trickling biofilter process for the treatment of swine wastewater.
    Zhao B; Li J; Buelna G; Dubé R; Le Bihan Y
    Environ Technol; 2016; 37(10):1265-75. PubMed ID: 26588487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Fe/S ratio on the kinetics and microbial ecology of an Fe(III)-dosed anaerobic wastewater treatment system.
    Ahmed M; Lin O; Saup CM; Wilkins MJ; Lin LS
    J Hazard Mater; 2019 May; 369():593-600. PubMed ID: 30822632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Schwertmannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of Ferrovum myxofaciens.
    Hedrich S; Lünsdorf H; Kleeberg R; Heide G; Seifert J; Schlömann M
    Environ Sci Technol; 2011 Sep; 45(18):7685-92. PubMed ID: 21838259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New perspectives on the passive treatment of ferruginous circumneutral mine waters in the UK.
    Sapsford DJ
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7827-36. PubMed ID: 23636592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus removal performance of acid mine drainage from wastewater.
    Ruihua L; Lin Z; Tao T; Bo L
    J Hazard Mater; 2011 Jun; 190(1-3):669-76. PubMed ID: 21514994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel sizing approach for passive mine water treatment systems based on ferric iron sedimentation kinetics.
    Opitz J; Bauer M; Alte M; Peiffer S
    Water Res; 2023 Apr; 233():119770. PubMed ID: 36868114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence and behaviour of dissolved, nano-particulate and micro-particulate iron in waste waters and treatment systems: new insights from electrochemical analysis.
    Matthies R; Aplin AC; Horrocks BR; Mudashiru LK
    J Environ Monit; 2012 Apr; 14(4):1174-81. PubMed ID: 22370608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.
    Hallberg KB; Johnson DB
    Sci Total Environ; 2005 Feb; 338(1-2):115-24. PubMed ID: 15680632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low molecular weight carboxylic acids in oxidizing porphyry copper tailings.
    Dold B; Blowes DW; Dickhout R; Spangenberg JE; Pfeifer HR
    Environ Sci Technol; 2005 Apr; 39(8):2515-21. PubMed ID: 15884343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage.
    Pozo G; Pongy S; Keller J; Ledezma P; Freguia S
    Water Res; 2017 Dec; 126():411-420. PubMed ID: 28987953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of acid mine drainage chemistry and microbiology on the development of efficient Fe removal activities.
    Sharma S; Lee M; Reinmann CS; Pumneo J; Cutright TJ; Senko JM
    Chemosphere; 2020 Jun; 249():126117. PubMed ID: 32088465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron removal in highly contaminated acid mine drainage using passive biochemical reactors.
    Genty T; Bussière B; Benzaazoua M; Neculita CM; Zagury GJ
    Water Sci Technol; 2017 Oct; 76(7-8):1833-1843. PubMed ID: 28991798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.