These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26676013)

  • 21. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands.
    Caselles-Osorio A; Garcia J
    Environ Pollut; 2007 Mar; 146(1):55-63. PubMed ID: 16996180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance of a constructed wetland as an upstream intervention for stormwater runoff quality management.
    Kabenge I; Ouma G; Aboagye D; Banadda N
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36765-36774. PubMed ID: 30414031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treatment performance of a constructed wetland during storm and non-storm events in Korea.
    Maniquiz MC; Lee SY; Choi JY; Jeong SM; Kim LH
    Water Sci Technol; 2012; 65(1):119-26. PubMed ID: 22173415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of performance assessment and design characteristics in constructed wetlands for the removal of organic matter.
    Hijosa-Valsero M; Sidrach-Cardona R; Martín-Villacorta J; Bécares E
    Chemosphere; 2010 Oct; 81(5):651-7. PubMed ID: 20800869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Empirical regression models for estimating nitrogen removal in a stormwater wetland during dry and wet days.
    Guerra HB; Park K; Kim Y
    Water Sci Technol; 2013; 68(7):1641-9. PubMed ID: 24135115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facilities for treatment of stormwater runoff from highways.
    Aldheimer G; Bennerstedt K
    Water Sci Technol; 2003; 48(9):113-21. PubMed ID: 14703145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating the efficiency and temporal variation of pilot-scale constructed wetlands and steel slag phosphorus removing filters for treating dairy wastewater.
    Lee MS; Drizo A; Rizzo DM; Druschel G; Hayden N; Twohig E
    Water Res; 2010 Jul; 44(14):4077-86. PubMed ID: 20566211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems.
    Zheng Y; Wang X; Dzakpasu M; Zhao Y; Ngo HH; Guo W; Ge Y; Xiong J
    Bioresour Technol; 2016 May; 207():134-41. PubMed ID: 26874442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.
    Geronimo FK; Maniquiz-Redillas MC; Tobio JA; Kim LH
    Water Sci Technol; 2014; 69(12):2460-7. PubMed ID: 24960008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands.
    Cui L; Ouyang Y; Yang W; Huang Z; Xu Q; Yu G
    J Environ Manage; 2015 Apr; 153():33-9. PubMed ID: 25646674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction simplicity and cost as selection criteria between two types of constructed wetlands treating highway runoff.
    Manios T; Fountoulakis MS; Karathanasis AD
    Environ Manage; 2009 May; 43(5):908-20. PubMed ID: 19225727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and monitoring of horizontal subsurface-flow constructed wetlands for treating nursery leachates.
    Narváez L; Cunill C; Cáceres R; Marfà O
    Bioresour Technol; 2011 Jun; 102(11):6414-20. PubMed ID: 21489781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effect of reed rhizosphere on nitrogen and COD removal efficiency in subsurface flow constructed wetlands].
    Dai YY; Yang XP; Zhou LX
    Huan Jing Ke Xue; 2008 Dec; 29(12):3387-92. PubMed ID: 19256373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research advances in using constructed wetlands to remove pesticides in agricultural runoff.
    Zhang XL; Yu ZD; Wang S; Li Y; Kong FL
    Ying Yong Sheng Tai Xue Bao; 2019 Mar; 30(3):1025-1034. PubMed ID: 30912396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Urban stormwater treatment by a constructed wetland: Seasonality impacts on hydraulic efficiency, physico-chemical behavior and heavy metal occurrence.
    Walaszek M; Bois P; Laurent J; Lenormand E; Wanko A
    Sci Total Environ; 2018 Oct; 637-638():443-454. PubMed ID: 29754079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The intensified constructed wetlands are promising for treatment of ammonia stripped effluent: Nitrogen transformations and removal pathways.
    Lyu T; He K; Dong R; Wu S
    Environ Pollut; 2018 May; 236():273-282. PubMed ID: 29414349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of cattail biomass on sulfate removal and carbon sources competition in subsurface-flow constructed wetlands treating secondary effluent.
    Chen Y; Wen Y; Zhou J; Tang Z; Li L; Zhou Q; Vymazal J
    Water Res; 2014 Aug; 59():1-10. PubMed ID: 24768761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of organic pollutants from oak leachate in pilot scale wetland systems: How efficient are aeration and vegetation treatments?
    Svensson H; Ekstam B; Marques M; Hogland W
    Water Res; 2015 Nov; 84():120-6. PubMed ID: 26218465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of operating parameters of hybrid vertical down-flow constructed wetland systems for domestic sewerage treatment.
    Huang Z; Zhang X; Cui L; Yu G
    J Environ Manage; 2016 Sep; 180():384-9. PubMed ID: 27262033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of multiple water surface flow constructed wetlands for non-point source water pollution control.
    Li D; Zheng B; Liu Y; Chu Z; He Y; Huang M
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5355-5368. PubMed ID: 29721728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.