These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26676257)

  • 21. Computational Approach To Reveal the Structural Stability and Electronic Properties of Lithiated M/CNT (M = Si, Ge) Nanocomposites as Anodes for Lithium-Ion Batteries.
    Bijoy TK; J K; Murugan P
    ACS Omega; 2019 Feb; 4(2):4153-4160. PubMed ID: 31459624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes.
    Croy JR; Balasubramanian M; Gallagher KG; Burrell AK
    Acc Chem Res; 2015 Nov; 48(11):2813-21. PubMed ID: 26451674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode.
    Zeng L; Pan F; Li W; Jiang Y; Zhong X; Yu Y
    Nanoscale; 2014 Aug; 6(16):9579-87. PubMed ID: 25008943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of Li adsorption on carbon nanotube-fullerene hybrid system: a first-principles study.
    Koh W; Choi JI; Donaher K; Lee SG; Jang SS
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1186-94. PubMed ID: 21443264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes.
    Xu T; Song J; Gordin ML; Sohn H; Yu Z; Chen S; Wang D
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11355-62. PubMed ID: 24090278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational Insights into Li
    Yi X; Liu X; Zhang P; Dou R; Wen Z; Zhou W
    J Phys Chem Lett; 2020 Mar; 11(6):2195-2202. PubMed ID: 31951140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative Study of Li-CO
    Thoka S; Tsai CM; Tong Z; Jena A; Wang FM; Hsu CC; Chang H; Hu SF; Liu RS
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):480-490. PubMed ID: 33375777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical architectures of TiO2 nanowires--CNT interpenetrating networks as high-rate anodes for lithium-ion batteries.
    Jin Z; Yang M; Wang G; Wang J; Luan Y; Tan L; Lu Y
    Nanotechnology; 2014 Oct; 25(39):395401. PubMed ID: 25189658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prospects and Limits of Energy Storage in Batteries.
    Abraham KM
    J Phys Chem Lett; 2015 Mar; 6(5):830-44. PubMed ID: 26262660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer.
    Tang Q; Zhou Z; Shen P
    J Am Chem Soc; 2012 Oct; 134(40):16909-16. PubMed ID: 22989058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical Porous ZnMn2 O4 Hollow Nanotubes with Enhanced Lithium Storage toward Lithium-Ion Batteries.
    Zhang L; Zhu S; Cao H; Hou L; Yuan C
    Chemistry; 2015 Jul; 21(30):10771-7. PubMed ID: 26079938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co3O4-carbon nanotube heterostructures with bead-on-string architecture for enhanced lithium storage performance.
    Xu M; Wang F; Zhang Y; Yang S; Zhao M; Song X
    Nanoscale; 2013 Sep; 5(17):8067-72. PubMed ID: 23877304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monolayer Phosphorene-Carbon Nanotube Heterostructures for Photocatalysis: Analysis by Density Functional Theory.
    Zhang Z; Cheng MQ; Chen Q; Wu HY; Hu W; Peng P; Huang GF; Huang WQ
    Nanoscale Res Lett; 2019 Jul; 14(1):233. PubMed ID: 31300919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amino acid analogues bind to carbon nanotube via π-π interactions: comparison of molecular mechanical and quantum mechanical calculations.
    Yang Z; Wang Z; Tian X; Xiu P; Zhou R
    J Chem Phys; 2012 Jan; 136(2):025103. PubMed ID: 22260616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ transmission electron microscopy observation of electrochemical sodiation of individual Co₉S₈-filled carbon nanotubes.
    Su Q; Du G; Zhang J; Zhong Y; Xu B; Yang Y; Neupane S; Li W
    ACS Nano; 2014 Apr; 8(4):3620-7. PubMed ID: 24611818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrahigh energy density Li-ion batteries based on cathodes of 1D metals with -Li-N-B-N- repeating units in α-Li(x)BN₂ (1 ⩽ x ⩽ 3).
    Németh K
    J Chem Phys; 2014 Aug; 141(5):054711. PubMed ID: 25106604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.