These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 26676552)
1. Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. Hakonen A; Rindzevicius T; Schmidt MS; Andersson PO; Juhlin L; Svedendahl M; Boisen A; Käll M Nanoscale; 2016 Jan; 8(3):1305-8. PubMed ID: 26676552 [TBL] [Abstract][Full Text] [Related]
2. Selective surface-enhanced Raman scattering detection of Tabun, VX and Cyclosarin nerve agents using 4-pyridine amide oxime functionalized gold nanopillars. Juhlin L; Mikaelsson T; Hakonen A; Schmidt MS; Rindzevicius T; Boisen A; Käll M; Andersson PO Talanta; 2020 May; 211():120721. PubMed ID: 32070593 [TBL] [Abstract][Full Text] [Related]
3. SERS-based ultrasensitive detection of organophosphorus nerve agents via substrate's surface modification. Zhao Q; Liu G; Zhang H; Zhou F; Li Y; Cai W J Hazard Mater; 2017 Feb; 324(Pt B):194-202. PubMed ID: 28340991 [TBL] [Abstract][Full Text] [Related]
4. Silicon nanohybrid-based surface-enhanced Raman scattering sensors. Wang H; Jiang X; Lee ST; He Y Small; 2014 Nov; 10(22):4455-68. PubMed ID: 25243935 [TBL] [Abstract][Full Text] [Related]
5. Sensitive and Reproducible Immunoassay of Multiple Mycotoxins Using Surface-Enhanced Raman Scattering Mapping on 3D Plasmonic Nanopillar Arrays. Wang X; Park SG; Ko J; Xiao X; Giannini V; Maier SA; Kim DH; Choo J Small; 2018 Sep; 14(39):e1801623. PubMed ID: 30062764 [TBL] [Abstract][Full Text] [Related]
7. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. Hakonen A; Andersson PO; Stenbæk Schmidt M; Rindzevicius T; Käll M Anal Chim Acta; 2015 Sep; 893():1-13. PubMed ID: 26398417 [TBL] [Abstract][Full Text] [Related]
8. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots. Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the surface enhanced raman scattering (SERS) of bacteria. Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017 [TBL] [Abstract][Full Text] [Related]
10. Detection of dimethyl methylphosphonate by thin water film confined surface-enhanced Raman scattering method. Wang J; Duan G; Liu G; Li Y; Chen Z; Xu L; Cai W J Hazard Mater; 2016 Feb; 303():94-100. PubMed ID: 26513568 [TBL] [Abstract][Full Text] [Related]
11. Designing and fabricating of surface-enhanced Raman scattering substrate with high density hot spots by polyaniline template-assisted self-assembly. Qian K; Liu H; Yang L; Liu J Nanoscale; 2012 Oct; 4(20):6449-54. PubMed ID: 22955203 [TBL] [Abstract][Full Text] [Related]
12. Surface-enhanced Raman spectroscopy of organic molecules adsorbed on metallic nanoparticles. Heleg-Shabtai V; Zifman A; Kendler S Adv Exp Med Biol; 2012; 733():53-61. PubMed ID: 22101712 [TBL] [Abstract][Full Text] [Related]
13. An optofluidic device for surface enhanced Raman spectroscopy. Wang M; Jing N; Chou IH; Cote GL; Kameoka J Lab Chip; 2007 May; 7(5):630-2. PubMed ID: 17476383 [TBL] [Abstract][Full Text] [Related]
14. Hand-Held Femtogram Detection of Hazardous Picric Acid with Hydrophobic Ag Nanopillar SERS Substrates and Mechanism of Elasto-Capillarity. Hakonen A; Wang F; Andersson PO; Wingfors H; Rindzevicius T; Schmidt MS; Soma VR; Xu S; Li Y; Boisen A; Wu H ACS Sens; 2017 Feb; 2(2):198-202. PubMed ID: 28723138 [TBL] [Abstract][Full Text] [Related]
15. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers. Liu X; Lebedkin S; Besser H; Pfleging W; Prinz S; Wissmann M; Schwab PM; Nazarenko I; Guttmann M; Kappes MM; Lemmer U ACS Nano; 2015 Jan; 9(1):260-70. PubMed ID: 25514354 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of surface-enhanced Raman scattering detection using a handheld and a bench-top Raman spectrometer: a comparative study. Zheng J; Pang S; Labuza TP; He L Talanta; 2014 Nov; 129():79-85. PubMed ID: 25127567 [TBL] [Abstract][Full Text] [Related]
17. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy. Ruan C; Eres G; Wang W; Zhang Z; Gu B Langmuir; 2007 May; 23(10):5757-60. PubMed ID: 17425344 [TBL] [Abstract][Full Text] [Related]
18. High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS). Kang G; Matikainen A; Stenberg P; Färm E; Li P; Ritala M; Vahimaa P; Honkanen S; Tan X ACS Appl Mater Interfaces; 2015 Jun; 7(21):11452-9. PubMed ID: 25961706 [TBL] [Abstract][Full Text] [Related]
19. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. Hwang H; Han D; Oh YJ; Cho YK; Jeong KH; Park JK Lab Chip; 2011 Aug; 11(15):2518-25. PubMed ID: 21674105 [TBL] [Abstract][Full Text] [Related]
20. Volume-Enhanced Raman Scattering Detection of Viruses. Zhang X; Zhang X; Luo C; Liu Z; Chen Y; Dong S; Jiang C; Yang S; Wang F; Xiao X Small; 2019 Mar; 15(11):e1805516. PubMed ID: 30706645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]