BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 26676778)

  • 21. Cellular Transcriptional Coactivator RanBP10 and Herpes Simplex Virus 1 ICP0 Interact and Synergistically Promote Viral Gene Expression and Replication.
    Sato Y; Kato A; Maruzuru Y; Oyama M; Kozuka-Hata H; Arii J; Kawaguchi Y
    J Virol; 2016 Jan; 90(6):3173-86. PubMed ID: 26739050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromatin dynamics and the transcriptional competence of HSV-1 genomes during lytic infections.
    Hu M; Depledge DP; Flores Cortes E; Breuer J; Schang LM
    PLoS Pathog; 2019 Nov; 15(11):e1008076. PubMed ID: 31725813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temporal Viral Genome-Protein Interactions Define Distinct Stages of Productive Herpesviral Infection.
    Dembowski JA; DeLuca NA
    mBio; 2018 Jul; 9(4):. PubMed ID: 30018111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of ND10 nuclear bodies in the chromatin repression of HSV-1.
    Gu H; Zheng Y
    Virol J; 2016 Apr; 13():62. PubMed ID: 27048561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular SNF2H chromatin-remodeling factor promotes herpes simplex virus 1 immediate-early gene expression and replication.
    Bryant KF; Colgrove RC; Knipe DM
    mBio; 2011 Jan; 2(1):e00330-10. PubMed ID: 21249171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visualizing the replicating HSV-1 virus using STED super-resolution microscopy.
    Li Z; Fang C; Su Y; Liu H; Lang F; Li X; Chen G; Lu D; Zhou J
    Virol J; 2016 Apr; 13():65. PubMed ID: 27062411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes.
    Hennig T; Michalski M; Rutkowski AJ; Djakovic L; Whisnant AW; Friedl MS; Jha BA; Baptista MAP; L'Hernault A; Erhard F; Dölken L; Friedel CC
    PLoS Pathog; 2018 Mar; 14(3):e1006954. PubMed ID: 29579120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IFI16 restricts HSV-1 replication by accumulating on the hsv-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications.
    Johnson KE; Bottero V; Flaherty S; Dutta S; Singh VV; Chandran B
    PLoS Pathog; 2014 Nov; 10(11):e1004503. PubMed ID: 25375629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stably paused genes revealed through inhibition of transcription initiation by the TFIIH inhibitor triptolide.
    Chen F; Gao X; Shilatifard A
    Genes Dev; 2015 Jan; 29(1):39-47. PubMed ID: 25561494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Herpes simplex viral nucleoprotein creates a competitive transcriptional environment facilitating robust viral transcription and host shut off.
    Dremel SE; DeLuca NA
    Elife; 2019 Oct; 8():. PubMed ID: 31638576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase II.
    Fraser KA; Rice SA
    J Virol; 2005 Sep; 79(17):11323-34. PubMed ID: 16103184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATRX limits the accessibility of histone H3-occupied HSV genomes during lytic infection.
    Cabral JM; Cushman CH; Sodroski CN; Knipe DM
    PLoS Pathog; 2021 Apr; 17(4):e1009567. PubMed ID: 33909709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts.
    Anamika K; Gyenis À; Poidevin L; Poch O; Tora L
    PLoS One; 2012; 7(6):e38769. PubMed ID: 22701709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities.
    Amelio AL; McAnany PK; Bloom DC
    J Virol; 2006 Mar; 80(5):2358-68. PubMed ID: 16474142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin dynamics during lytic infection with herpes simplex virus 1.
    Conn KL; Schang LM
    Viruses; 2013 Jul; 5(7):1758-86. PubMed ID: 23863878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq.
    Pal S; Gupta R; Davuluri RV
    Methods Mol Biol; 2014; 1176():1-9. PubMed ID: 25030914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal ChIP-on-Chip of RNA-Polymerase-II to detect novel gene activation events during photoreceptor maturation.
    Tummala P; Mali RS; Guzman E; Zhang X; Mitton KP
    Mol Vis; 2010 Feb; 16():252-71. PubMed ID: 20161818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of herpes simplex virus gene transcription in vitro.
    Beck TW; Millette RL
    J Cell Biochem; 1982; 19(4):333-47. PubMed ID: 6298254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA polymerase II is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection.
    Rice SA; Long MC; Lam V; Spencer CA
    J Virol; 1994 Feb; 68(2):988-1001. PubMed ID: 8289400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of histone deposition on the herpes simplex virus type 1 genome during lytic infection.
    Kutluay SB; Triezenberg SJ
    J Virol; 2009 Jun; 83(11):5835-45. PubMed ID: 19321615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.