These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 26676800)

  • 1. 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions.
    Lu Q; Yu Y; Ma Q; Chen B; Zhang H
    Adv Mater; 2016 Mar; 28(10):1917-33. PubMed ID: 26676800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction.
    Voiry D; Yang J; Chhowalla M
    Adv Mater; 2016 Aug; 28(29):6197-206. PubMed ID: 26867809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in solution assisted synthesis of transition metal chalcogenides for photo-electrocatalytic hydrogen evolution.
    Gautam A; Sk S; Pal U
    Phys Chem Chem Phys; 2022 Sep; 24(35):20638-20673. PubMed ID: 36047908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D Transition Metal Dichalcogenides and Graphene-Based Ternary Composites for Photocatalytic Hydrogen Evolution and Pollutants Degradation.
    Chen Y; Sun H; Peng W
    Nanomaterials (Basel); 2017 Mar; 7(3):. PubMed ID: 28336898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity.
    Zhu Z; Yin H; He CT; Al-Mamun M; Liu P; Jiang L; Zhao Y; Wang Y; Yang HG; Tang Z; Wang D; Chen XM; Zhao H
    Adv Mater; 2018 Jul; 30(28):e1801171. PubMed ID: 29782677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocomposite Electrocatalysts for Hydrogen Evolution Reactions (HERs) for Sustainable and Efficient Hydrogen Energy-Future Prospects.
    Jawhari AH; Hasan N
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition-Metal Phosphide-Carbon Nanosheet Composites Derived from Two-Dimensional Metal-Organic Frameworks for Highly Efficient Electrocatalytic Water-Splitting.
    Zhai M; Wang F; Du H
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40171-40179. PubMed ID: 29098858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Organic Frameworks-Derived Self-Supported Carbon-Based Composites for Electrocatalytic Water Splitting.
    Cong Y; Huang S; Mei Y; Li TT
    Chemistry; 2021 Nov; 27(64):15866-15888. PubMed ID: 34472663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient, Green, and Scalable β-Cyclodextrin-Assisted Aqueous Exfoliation of Transition-Metal Dichalcogenides: MoS
    Zhao W; Tan X; Jiang J; Liu F; Mu T
    Chem Asian J; 2017 May; 12(10):1052-1056. PubMed ID: 28374538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional semiconductor transition metal based chalcogenide based heterostructures for water splitting applications.
    Sumesh CK; Peter SC
    Dalton Trans; 2019 Sep; 48(34):12772-12802. PubMed ID: 31411204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Defect-Engineered Transition Metal Dichalcogenides for Enhanced Electrocatalytic Hydrogen Evolution: Perfecting Imperfections.
    Tan ZH; Kong XY; Ng BJ; Soo HS; Mohamed AR; Chai SP
    ACS Omega; 2023 Jan; 8(2):1851-1863. PubMed ID: 36687105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2D Monolayer Catalysts: Towards Efficient Water Splitting and Green Hydrogen Production.
    Modi KH; Pataniya PM; Sumesh CK
    Chemistry; 2024 Apr; 30(23):e202303978. PubMed ID: 38299695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalytic Performance of 2D Monolayer WSeTe Janus Transition Metal Dichalcogenide for Highly Efficient H
    Kumar V; Halba D; Upadhyay SN; Pakhira S
    Langmuir; 2024 Jul; 40(29):14872-14887. PubMed ID: 38995219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts.
    Chang H; Liang Z; Wang L; Wang C
    Nanoscale; 2022 Apr; 14(15):5639-5656. PubMed ID: 35333268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the hydrogen evolution reaction of nickel dichalcogenide nanosheets: activities related to non-metal ligands.
    Ge Y; Gao SP; Dong P; Baines R; Ajayan PM; Ye M; Shen J
    Nanoscale; 2017 May; 9(17):5538-5544. PubMed ID: 28405648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Dimensional Co@N-Carbon Nanocomposites Facilely Derived from Metal-Organic Framework Nanosheets for Efficient Bifunctional Electrocatalysis.
    Cong J; Xu H; Lu M; Wu Y; Li Y; He P; Gao J; Yao J; Xu S
    Chem Asian J; 2018 Jun; 13(11):1485-1491. PubMed ID: 29624891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Metal-Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting.
    Wang W; Xu X; Zhou W; Shao Z
    Adv Sci (Weinh); 2017 Apr; 4(4):1600371. PubMed ID: 28435777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review on 2D Molybdenum Diselenide (MoSe
    Wazir MB; Daud M; Safeer S; Almarzooqi F; Qurashi A
    ACS Omega; 2022 May; 7(20):16856-16865. PubMed ID: 35647463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chalcogenide vacancies drive the electrocatalytic performance of rhenium dichalcogenides.
    Luxa J; Marvan P; Lazar P; Sofer Z
    Nanoscale; 2019 Aug; 11(31):14684-14690. PubMed ID: 31343029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.