These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 26676892)
1. Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor. Liu CT; Erh MH; Lin SP; Lo KY; Chen KI; Cheng KC J Sci Food Agric; 2016 Aug; 96(11):3779-86. PubMed ID: 26676892 [TBL] [Abstract][Full Text] [Related]
2. Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Kuo LC; Cheng WY; Wu RY; Huang CJ; Lee KT Appl Microbiol Biotechnol; 2006 Nov; 73(2):314-20. PubMed ID: 16715232 [TBL] [Abstract][Full Text] [Related]
3. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. Rekha CR; Vijayalakshmi G J Appl Microbiol; 2010 Oct; 109(4):1198-208. PubMed ID: 20477889 [TBL] [Abstract][Full Text] [Related]
4. β-Glucosidase activity and bioconversion of isoflavones during fermentation of soymilk. Hati S; Vij S; Singh BP; Mandal S J Sci Food Agric; 2015 Jan; 95(1):216-20. PubMed ID: 24838442 [TBL] [Abstract][Full Text] [Related]
5. Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi. Lee IH; Chou CC J Agric Food Chem; 2006 Feb; 54(4):1309-14. PubMed ID: 16478253 [TBL] [Abstract][Full Text] [Related]
6. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids. Tang AL; Shah NP; Wilcox G; Walker KZ; Stojanovska L J Food Sci; 2007 Nov; 72(9):M431-6. PubMed ID: 18034738 [TBL] [Abstract][Full Text] [Related]
7. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Chien HL; Huang HY; Chou CC Food Microbiol; 2006 Dec; 23(8):772-8. PubMed ID: 16943081 [TBL] [Abstract][Full Text] [Related]
8. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. Chun J; Kim GM; Lee KW; Choi ID; Kwon GH; Park JY; Jeong SJ; Kim JS; Kim JH J Food Sci; 2007 Mar; 72(2):M39-44. PubMed ID: 17995840 [TBL] [Abstract][Full Text] [Related]
9. Enrichment of two isoflavone aglycones in black soymilk by immobilized β-glucosidase on solid carriers. Chen KI; Lo YC; Su NW; Chou CC; Cheng KC J Agric Food Chem; 2012 Dec; 60(51):12540-6. PubMed ID: 23190054 [TBL] [Abstract][Full Text] [Related]
10. Isoflavone phytoestrogen degradation in fermented soymilk with selected beta-glucosidase producing L. acidophilus strains during storage at different temperatures. Otieno DO; Ashton JF; Shah NP Int J Food Microbiol; 2007 Apr; 115(1):79-88. PubMed ID: 17174431 [TBL] [Abstract][Full Text] [Related]
11. Biomolecules and nutritional quality of soymilk fermented with probiotic yeast and bacteria. Rekha CR; Vijayalakshmi G Appl Biochem Biotechnol; 2008 Dec; 151(2-3):452-63. PubMed ID: 18607548 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Cholesterol-Lowering and Antioxidant Activities of Soymilk by Fermentation with Han JS; Joung JY; Kim HW; Kim JH; Choi HS; Bae HJ; Jang JH; Oh NS J Microbiol Biotechnol; 2023 Nov; 33(11):1475-1483. PubMed ID: 37482800 [TBL] [Abstract][Full Text] [Related]
13. Production of beta-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. Donkor ON; Shah NP J Food Sci; 2008 Jan; 73(1):M15-20. PubMed ID: 18211356 [TBL] [Abstract][Full Text] [Related]
14. Hydrolysis of isoflavone glucosides in soymilk fermented with single or mixed cultures of Lactobacillus paraplantarum KM, Weissella sp. 33, and Enterococcus faecium 35 isolated from humans. Chun J; Jeong WJ; Kim JS; Lim J; Park CS; Kwon DY; Choi I; Kim JH J Microbiol Biotechnol; 2008 Mar; 18(3):573-8. PubMed ID: 18388479 [TBL] [Abstract][Full Text] [Related]
15. Changes in soymilk during fermentation with kefir culture: oligosaccharides hydrolysis and isoflavone aglycone production. Baú TR; Garcia S; Ida EI Int J Food Sci Nutr; 2015; 66(8):845-50. PubMed ID: 26460145 [TBL] [Abstract][Full Text] [Related]
16. Effects of Lactic Acid Bacteria-Fermented Soymilk on Isoflavone Metabolites and Short-Chain Fatty Acids Excretion and Their Modulating Effects on Gut Microbiota. Dai S; Pan M; El-Nezami HS; Wan JMF; Wang MF; Habimana O; Lee JCY; Louie JCY; Shah NP J Food Sci; 2019 Jul; 84(7):1854-1863. PubMed ID: 31206699 [TBL] [Abstract][Full Text] [Related]
17. Endogenous beta-glucosidase and beta-galactosidase activities from selected probiotic micro-organisms and their role in isoflavone biotransformation in soymilk. Otieno DO; Shah NP J Appl Microbiol; 2007 Oct; 103(4):910-7. PubMed ID: 17897193 [TBL] [Abstract][Full Text] [Related]
18. Combined isoflavones biotransformation increases the bioactive and antioxidant capacity of soymilk. de Queirós LD; de Ávila ARA; Botaro AV; Chirotto DBL; Macedo JA; Macedo GA Appl Microbiol Biotechnol; 2020 Dec; 104(23):10019-10031. PubMed ID: 33136177 [TBL] [Abstract][Full Text] [Related]
19. A comparison of changes in the transformation of isoflavones in soymilk using varying concentrations of exogenous and probiotic-derived endogenous beta-glucosidases. Otieno DO; Shah NP J Appl Microbiol; 2007 Sep; 103(3):601-12. PubMed ID: 17714393 [TBL] [Abstract][Full Text] [Related]
20. Innovative Soaking and Grinding Methods and Cooking Affect the Retention of Isoflavones, Antioxidant and Antiproliferative Properties in Soymilk Prepared from Black Soybean. Tan Y; Chang SK; Zhang Y J Food Sci; 2016 Apr; 81(4):H1016-23. PubMed ID: 26954068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]