BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26676965)

  • 1. Skin-Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture.
    Zhu B; Wang H; Liu Y; Qi D; Liu Z; Wang H; Yu J; Sherburne M; Wang Z; Chen X
    Adv Mater; 2016 Feb; 28(8):1559-66. PubMed ID: 26676965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing.
    Chou HH; Nguyen A; Chortos A; To JW; Lu C; Mei J; Kurosawa T; Bae WG; Tok JB; Bao Z
    Nat Commun; 2015 Aug; 6():8011. PubMed ID: 26300307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures.
    Park J; Lee Y; Hong J; Lee Y; Ha M; Jung Y; Lim H; Kim SY; Ko H
    ACS Nano; 2014 Dec; 8(12):12020-9. PubMed ID: 25389631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch.
    Hou C; Wang H; Zhang Q; Li Y; Zhu M
    Adv Mater; 2014 Aug; 26(29):5018-24. PubMed ID: 24890343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Tribotronic Resistive Switching Memory for Self-Powered Memorizing Mechanical Stimuli.
    Sun Y; Zheng X; Yan X; Liao Q; Liu S; Zhang G; Li Y; Zhang Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43822-43829. PubMed ID: 29160691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pursuing prosthetic electronic skin.
    Chortos A; Liu J; Bao Z
    Nat Mater; 2016 Sep; 15(9):937-50. PubMed ID: 27376685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paper-Based Active Tactile Sensor Array.
    Zhong Q; Zhong J; Cheng X; Yao X; Wang B; Li W; Wu N; Liu K; Hu B; Zhou J
    Adv Mater; 2015 Nov; 27(44):7130-6. PubMed ID: 26450138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation.
    Yu S; Gao B; Fang Z; Yu H; Kang J; Wong HS
    Adv Mater; 2013 Mar; 25(12):1774-9. PubMed ID: 23355110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halogen-Assisted Piezochromic Supramolecular Assemblies for Versatile Haptic Memory.
    Bai L; Bose P; Gao Q; Li Y; Ganguly R; Zhao Y
    J Am Chem Soc; 2017 Jan; 139(1):436-441. PubMed ID: 27966920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Texture recognition and localization in amorphous robotic skin.
    Hughes D; Correll N
    Bioinspir Biomim; 2015 Sep; 10(5):055002. PubMed ID: 26352901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memristive Circuit Design of Emotional Generation and Evolution Based on Skin-Like Sensory Processor.
    Wang Z; Hong Q; Wang X
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):631-644. PubMed ID: 31217128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sericin for resistance switching device with multilevel nonvolatile memory.
    Wang H; Meng F; Cai Y; Zheng L; Li Y; Liu Y; Jiang Y; Wang X; Chen X
    Adv Mater; 2013 Oct; 25(38):5498-503. PubMed ID: 23893500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic and optoelectronic materials and devices inspired by nature.
    Meredith P; Bettinger CJ; Irimia-Vladu M; Mostert AB; Schwenn PE
    Rep Prog Phys; 2013 Mar; 76(3):034501. PubMed ID: 23411598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrotactile and vibrotactile displays for sensory substitution systems.
    Kaczmarek KA; Webster JG; Bach-y-Rita P; Tompkins WJ
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):1-16. PubMed ID: 2026426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Skin-Inspired Electronic Sensor Skin with Electromagnetic Interference Shielding for the Sensation and Protection of Wearable Electronics.
    Pu JH; Zha XJ; Tang LS; Bai L; Bao RY; Liu ZY; Yang MB; Yang W
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40880-40889. PubMed ID: 30387980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Logic Gate Functions Built with Nonvolatile Resistive Switching and Thermoresponsive Memory Based on Biologic Proteins.
    Sun Y; Wen D; Xie Y; Sun F; Mo X; Zhu J; Sun H
    J Phys Chem Lett; 2019 Dec; 10(24):7745-7752. PubMed ID: 31773960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Habituation Sensory Nervous System with Memristors.
    Wu Z; Lu J; Shi T; Zhao X; Zhang X; Yang Y; Wu F; Li Y; Liu Q; Liu M
    Adv Mater; 2020 Nov; 32(46):e2004398. PubMed ID: 33063391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From dead leaves to sustainable organic resistive switching memory.
    Sun B; Zhu S; Mao S; Zheng P; Xia Y; Yang F; Lei M; Zhao Y
    J Colloid Interface Sci; 2018 Mar; 513():774-778. PubMed ID: 29223889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance switching characteristics of solid electrolyte chalcogenide Ag(2)Se nanoparticles for flexible nonvolatile memory applications.
    Jang J; Pan F; Braam K; Subramanian V
    Adv Mater; 2012 Jul; 24(26):3573-6. PubMed ID: 22688973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible organic memory devices with multilayer graphene electrodes.
    Ji Y; Lee S; Cho B; Song S; Lee T
    ACS Nano; 2011 Jul; 5(7):5995-6000. PubMed ID: 21662978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.