These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26677048)

  • 1. Production of an intraocular device using 3D printing: an innovative technology for ophthalmology.
    Canabrava S; Diniz-Filho A; Schor P; Fagundes DF; Lopes A; Batista WD
    Arq Bras Oftalmol; 2015; 78(6):393-4. PubMed ID: 26677048
    [No Abstract]   [Full Text] [Related]  

  • 2. [The application progress of 3D printing technology in ophthalmology].
    Ji ZK; Zhao Y; Yu SS; Zhao H
    Zhonghua Yan Ke Za Zhi; 2018 Jan; 54(1):72-76. PubMed ID: 29429290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Possibility of 3D Printing in Ophthalmology - First Experiences by Stereotactic Radiosurgery Planning Scheme of Intraocular Tumor].
    Furdová A; Furdová A; Thurzo A; Šramka M; Chorvát M; Králik G
    Cesk Slov Oftalmol; 2016; 72(3):80-84. PubMed ID: 27658975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing for low cost, rapid prototyping of eyelid crutches.
    Sun MG; Rojdamrongratana D; Rosenblatt MI; Aakalu VK; Yu CQ
    Orbit; 2019 Aug; 38(4):342-346. PubMed ID: 29498564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of three-dimensional printing technology in urological practice.
    Youssef RF; Spradling K; Yoon R; Dolan B; Chamberlin J; Okhunov Z; Clayman R; Landman J
    BJU Int; 2015 Nov; 116(5):697-702. PubMed ID: 26010346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Printing: Print the future of ophthalmology.
    Huang W; Zhang X
    Invest Ophthalmol Vis Sci; 2014 Aug; 55(8):5380-1. PubMed ID: 25159591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics.
    Stanton MM; Trichet-Paredes C; Sánchez S
    Lab Chip; 2015 Apr; 15(7):1634-7. PubMed ID: 25632887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovations in 3D printing: a 3D overview from optics to organs.
    Schubert C; van Langeveld MC; Donoso LA
    Br J Ophthalmol; 2014 Feb; 98(2):159-61. PubMed ID: 24288392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing of MRI compatible components: why every MRI research group should have a low-budget 3D printer.
    Herrmann KH; Gärtner C; Güllmar D; Krämer M; Reichenbach JR
    Med Eng Phys; 2014 Oct; 36(10):1373-80. PubMed ID: 25092622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphoton crosslinking for biocompatible 3D printing of type I collagen.
    Bell A; Kofron M; Nistor V
    Biofabrication; 2015 Sep; 7(3):035007. PubMed ID: 26335389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.
    Kamei K; Mashimo Y; Koyama Y; Fockenberg C; Nakashima M; Nakajima M; Li J; Chen Y
    Biomed Microdevices; 2015 Apr; 17(2):36. PubMed ID: 25686903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of 3-dimensional printing in hand surgery for production of a novel bone reduction clamp.
    Fuller SM; Butz DR; Vevang CB; Makhlouf MV
    J Hand Surg Am; 2014 Sep; 39(9):1840-5. PubMed ID: 25042538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Three-Dimensional Printing to Fabricate a Tubing Connector for Dilation and Evacuation.
    Stitely ML; Paterson H
    Obstet Gynecol; 2016 Feb; 127(2):317-9. PubMed ID: 26942360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Customised 3D Printing: An Innovative Training Tool for the Next Generation of Orbital Surgeons.
    Scawn RL; Foster A; Lee BW; Kikkawa DO; Korn BS
    Orbit; 2015; 34(4):216-9. PubMed ID: 26121063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology.
    Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K
    J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system.
    Lee SJ; Heo DN; Park JS; Kwon SK; Lee JH; Lee JH; Kim WD; Kwon IK; Park SA
    Phys Chem Chem Phys; 2015 Feb; 17(5):2996-9. PubMed ID: 25557615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional bio-printing.
    Gu Q; Hao J; Lu Y; Wang L; Wallace GG; Zhou Q
    Sci China Life Sci; 2015 May; 58(5):411-9. PubMed ID: 25921944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization.
    Song SJ; Choi J; Park YD; Lee JJ; Hong SY; Sun K
    Artif Organs; 2010 Nov; 34(11):1044-8. PubMed ID: 21092048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
    Obregon F; Vaquette C; Ivanovski S; Hutmacher DW; Bertassoni LE
    J Dent Res; 2015 Sep; 94(9 Suppl):143S-52S. PubMed ID: 26124216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in the application of 3D printing technology in ophthalmology.
    Ali MJ
    Graefes Arch Clin Exp Ophthalmol; 2023 Apr; 261(4):901-902. PubMed ID: 36399177
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.